Publications by authors named "Rita Magri"

Conventional techniques of measuring thermal transport properties may be unreliable or unwieldy when applied to nanostructures. However, a simple, all-electrical technique is available for all samples featuring high-aspect-ratio: the 3method. Nonetheless, its usual formulation relies on simple analytical results which may break down in real experimental conditions.

View Article and Find Full Text PDF

Using the density functional theory (DFT) we have investigated how Ag and Cu atoms, substitutional to Ce, arrange themselves within Ceria (CeO) and their effect on the ceria lattice, the oxidation states of the metal atoms, and the oxygen vacancy formation energies. Noble metal doped ceria has been proposed in substitution of platinum for a number of catalytic reactions. We have considered single noble metal atoms substituting Ce atoms in the (111) CeOsurface unit cell, and investigated the thermodynamic stability of few configurations of one, two, and four Ag or Cu atoms in the unit cell.

View Article and Find Full Text PDF

In the present work, we have modified the physical and electronic structure of Sb/Ge core/shell nanowires via vacancy creation and doping with foreign atoms with the aim to improve their thermoelectric energy conversion efficiency. Sb/Ge-NWs having a diameter of 1.5 Å show metallicity with 2G quantum conductance.

View Article and Find Full Text PDF

In these last years large research efforts have been devoted to the synthesis and investigation of reducible metal oxide surfaces modified with metal atoms and nanoparticles for improving their performance in a number of advanced applications. Among reducible metal oxides, iron oxides have the advantage to be made up from two of the most common elements on Earth. In this paper we analyze the structural, electronic, and magnetic consequences of the insertion of isolated noble metal atoms (Cu, Ag, Au) on the-FeO(001) surface.

View Article and Find Full Text PDF

We investigate the mechanism of H activation on Ag-modified cerium oxide surfaces, of interest for different catalytic applications. The study is performed on thin epitaxial cerium oxide films, investigated by X-ray photoemission spectroscopy to assess the changes of both the Ag oxidation state and the concentration of Ce ions, O vacancies, and hydroxyl groups on the surface during thermal reduction cycles in vacuum and under hydrogen exposure. The results are interpreted using density functional theory calculations to model pristine and Ag-modified ceria surfaces.

View Article and Find Full Text PDF

One dimensional heterostructure nanowires (NWs) have attracted a large attention due to the possibility of easily tuning their energy gap, a useful property for application to next generation electronic devices. In this work, we propose new core/shell NW systems where Ge and Si shells are built around very thin As and Sb cores. The modification in the electronic properties arises due to the induced compressive strain experienced by the metal core region which is attributed to the lattice-mismatch with the shell region.

View Article and Find Full Text PDF

Here we show a new effect due to the arsenic flux in the molecular beam epitaxy growth of InAs quantum dots on GaAs(001) at temperatures higher than 500 °C and high As/In flux ratio. We show that, by changing and tuning the direction of the As flux on a rippled substrate, a selective growth can be obtained where the dots form only on some appropriately orientated slopes of a sequence of mounds elongated along the [110] surface direction. Since the relative As flux intensity difference over the two opposite mound slopes is very small (2-5%), the observed large effect cannot be explained simply as a pure shadowing effect and reveals instead that As, whose contribution to the modeling of growth has often been ignored or underestimated, probably for a lack of knowledge, plays a fundamental role at these growth conditions.

View Article and Find Full Text PDF

On the basis of accurate ab initio calculations, we propose a model for predicting the stability of III-V nanowires (NW) having different side walls and ridge configurations. The model allows us to obtain the NW formation energies by performing calculations only on relatively "small" systems, small diameter NWs and flat surfaces, to extract the contributions to the stability of each structural motif. Despite the idea illustrated here for the case of hexagonally shaped GaAs NWs grown along the [111]/[0001] direction, the method can also be applied generally to other differently shaped and oriented III-V NWs.

View Article and Find Full Text PDF

Total energy calculations within the Density Functional Theory have been carried out in order to investigate the structural, electronic, and optical properties of un-doped and doped silicon nanostructures of different size and different surface terminations. In particular the effects induced by the creation of an electron-hole pair on the properties of hydrogenated silicon nanoclusters as a function of dimension are discussed in detail showing the strong interplay between the structural and optical properties of the system. The distortion induced on the structure by an electronic excitation of the cluster is analyzed and considered in the evaluation of the Stokes shift between absorption and emission energies.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionontjomn6i7f8qgunn7b1m98vi4ecgm88): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once