The Bacillus Calmette-Guérin (BCG) vaccine is the oldest cancer immunotherapeutic agent in use. Despite its effectiveness, its initial mechanisms of action remain largely unknown. Here, we elucidate the earliest cellular mechanisms involved in BCG-induced tumor clearance.
View Article and Find Full Text PDFSelective cleavage of amide bonds holds prominent significance by facilitating precise manipulation of biomolecules, with implications spanning from basic research to therapeutic interventions. However, achieving selective cleavage of amide bonds via mild synthetic chemistry routes poses a critical challenge. Here, we report a novel amide bond-cleavage reaction triggered by Na[AuCl] in mild aqueous conditions, where a crucial cyclization step leads to the formation of a 5-membered ring intermediate that rapidly hydrolyses to release the free amine in high yields.
View Article and Find Full Text PDFCancer patients often undergo rounds of trial-and-error to find the most effective treatment because there is no test in the clinical practice for predicting therapy response. Here, we conduct a clinical study to validate the zebrafish patient-derived xenograft model (zAvatar) as a fast predictive platform for personalized treatment in colorectal cancer. zAvatars are generated with patient tumor cells, treated exactly with the same therapy as their corresponding patient and analyzed at single-cell resolution.
View Article and Find Full Text PDF(1) Background: Relapsed HGSOC with ascites and/or pleural effusion is a poor-prognostic population and poorly represented in clinical studies. We questioned if these patients are worth treating. In other words, if these patients received the most effective treatment, would it change the course of this disease? To our knowledge this is the first real-life study to evaluate this question in this low-survival population.
View Article and Find Full Text PDFThe ability to control the activation of prodrugs by transition metals has been shown to have great potential for controlled drug release in cancer cells. However, the strategies developed so far promote the cleavage of C-O or C-N bonds, which limits the scope of drugs to only those that present amino or hydroxyl groups. Here, we report the decaging of an -quinone prodrug, a propargylated β-lapachone derivative, through a palladium-mediated C-C bond cleavage.
View Article and Find Full Text PDFBruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation.
View Article and Find Full Text PDFNeoadjuvant chemoradiation (nCRT) followed by surgery represents the standard of care in patients with locally advanced rectal cancer. Increasing radiotherapy (RT) doses and chemotherapy cycles with 5FU have been associated with increased rates of complete response, however these strategies imply significant toxicity. In the last years, epidemiologic findings have demonstrated that metformin is associated with significantly higher rates of pathological complete response to nCRT.
View Article and Find Full Text PDFPatient-derived xenografts (PDXs), also called "avatars," are generated by the implantation of human primary tumor cells or tissues into a host animal. Given the complexity and unique characteristics of each tumor, PDXs are models of choice in cancer research and precision medicine. In this context, the zebrafish PDX model (zPDX or zAvatar) has been recognized as a promising in vivo model to directly challenge patient cells with anti-cancer therapies in a personalized manner.
View Article and Find Full Text PDFPurpose: Cetuximab is an EGFR-targeted therapy approved for the treatment of RAS wild-type (WT) metastatic colorectal cancer (mCRC). However, about 60% of these patients show innate resistance to cetuximab. To increase cetuximab efficacy, it is crucial to successfully identify responder patients, as well as to develop new therapeutic approaches to overcome cetuximab resistance.
View Article and Find Full Text PDFCell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting automation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming different shapes and sizes.
View Article and Find Full Text PDFBackground: Cancers of the pancreas and biliary tree remain one of the most aggressive oncological malignancies, with most patients relying on systemic chemotherapy. However, effective biomarkers to predict the best therapy option for each patient are still lacking. In this context, an assay able to evaluate individual responses prior to treatment would be of great value for clinical decisions.
View Article and Find Full Text PDFZebrafish larval xenografts are being widely used for cancer research to perform in vivo and real-time studies of human cancer. The possibility of rapidly visualizing the response to anti-cancer therapies (chemo, radiotherapy, and biologicals), angiogenesis and metastasis with single cell resolution, places the zebrafish xenograft model as a top choice to develop preclinical studies. The zebrafish larval xenograft assay presents several experimental advantages compared to other models, but probably the most striking is the reduction of size scale and consequently time.
View Article and Find Full Text PDFTumor models allowing for the in vivo investigation of molecular mechanisms driving tumor progression and metastasis are important to develop novel strategies for cancer treatment. Unfortunately, for Ewing sarcoma no adequate genetic animal models are currently available. Mouse xenograft models are the state of the art to model Ewing sarcoma in vivo.
View Article and Find Full Text PDFPoly (ADP-ribose) polymerase (PARP) inhibition in BRCA-mutated cells results in an incapacity to repair DNA damage, leading to cell death caused by synthetic lethality. Within the treatment options for advanced triple negative breast cancer, the PARP inhibitor olaparib is only given to patients with BRCA1/2 mutations. However, these patients may show resistance to this drug and BRCA1/2 wild-type tumors can show a striking sensitivity, making BRCA status a poor biomarker for treatment choice.
View Article and Find Full Text PDFDespite promising preclinical results, average response rates to anti-VEGF therapies, such as bevacizumab, are reduced for most cancers, while incurring in remarkable costs and side effects. Currently, there are no biomarkers available to select patients that can benefit from this therapy. Depending on the individual tumor, anti-VEGF therapies can either block or promote metastasis.
View Article and Find Full Text PDFThe ability to create ways to control drug activation at specific tissues while sparing healthy tissues remains a major challenge. The administration of exogenous target-specific triggers offers the potential for traceless release of active drugs on tumor sites from antibody-drug conjugates (ADCs) and caged prodrugs. We have developed a metal-mediated bond-cleavage reaction that uses platinum complexes [KPtCl or Cisplatin (CisPt)] for drug activation.
View Article and Find Full Text PDFMalfunctions of circadian clock trigger abnormal cellular processes and influence tumorigenesis. Using an and xenograft model, we show that circadian clock disruption via the downregulation of the core-clock genes , , and impacts the circadian phenotype of , , and , and affects proliferation, apoptosis, and cell migration. In particular, both our and results suggest an impairment of cell motility and a reduction in micrometastasis formation upon knockdown of , accompanied by altered expression levels of and .
View Article and Find Full Text PDFCancer frequency and prevalence have been increasing in the past decades, with devastating impacts on patients and their families. Despite the great advances in targeted approaches, there is still a lack of methods to predict individual patient responses, and therefore treatments are tailored according to average response rates. "Omics" approaches are used for patient stratification and choice of therapeutic options towards a more precise medicine.
View Article and Find Full Text PDFBackground & Aims: Vascular invasion is a major prognostic factor in hepatocellular carcinoma (HCC). We previously identified histone H4 acetylated at lysine 16 (H4K16ac), a histone modification involved in transcription activation, as a biomarker of microvascular invasion (mVI) in HCC. This study aimed to investigate the role of hMOF, the histone acetyltransferase responsible for H4K16 acetylation, in the process of vascular invasion in HCC.
View Article and Find Full Text PDFBackground: Whereas the role of neoadjuvant radiotherapy in rectal cancer is well-established, the ability to discriminate between radioresistant and radiosensitive tumors before starting treatment is still a crucial unmet need. Here we aimed to develop an in vivo test to directly challenge living cancer cells to radiotherapy, using zebrafish xenografts.
Methods: We generated zebrafish xenografts using colorectal cancer cell lines and patient biopsies without in vitro passaging, and developed a fast radiotherapy protocol consisting of a single dose of 25 Gy.
The formation of distinct 3'UTRs through alternative polyadenylation is a mechanism of gene expression regulation that has been implicated in many physiological and pathological processes. However, its functions in the context of vertebrate embryonic development have been largely unaddressed, in particular with a gene-specific focus. Here we show that the most abundant 3'UTR for the zebrafish fgf8a gene in the developing embryo mediates a strong translational repression, when compared to a more sparsely used alternative 3'UTR, which supports a higher translational efficiency.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2017
Cancer is as unique as the person fighting it. With the exception of a few biomarker-driven therapies, patients go through rounds of trial-and-error approaches to find the best treatment. Using patient-derived cell lines, we show that zebrafish larvae xenotransplants constitute a fast and highly sensitive in vivo model for differential therapy response, with resolution to reveal intratumor functional cancer heterogeneity.
View Article and Find Full Text PDFThe European Zebrafish Principal Investigator Meeting (EZPM) is an ideal forum for group leaders using this fantastic animal model not only to discuss science but also to strengthen their interactions, to push forward technological advances, and to define guidelines for the use of this fish in research. The city of Lisbon (Portugal) was voted by the European group leaders to be the setting for the 4th EZPM, and the organizing committee, composed by Leonor Saúde (iMM Lisboa, PT), Susana Lopes (CEDOC, PT), Michael Orger (Champalimaud Foundation, PT), Rui Oliveira (ISPA, PT), and António Jacinto (CEDOC, PT), was very enthusiastic to organize a productive event. The 4th EZPM took place from March 15 to 19 at Pavilhão do Conhecimento, a Science Museum and Educational Center winner of The Great Prize FAD of Arquitecture 1999 and The Society for Environmental Graphic Design Award 2011.
View Article and Find Full Text PDF