Many chemical processes rely extensively on organic solvents posing safety and environmental concerns. For a successful transfer of some of those chemical processes and reactions to aqueous media, agents acting as solubilizers, or phase-modifiers, are of central importance. In the present work, the structure of aqueous solutions of several ionic liquid systems capable of forming multiple solubilizing environments were modeled by molecular dynamics simulations.
View Article and Find Full Text PDFThe red flavylium cations of anthocyanins form ground-state charge-transfer complexes with several naturally occurring electron-donor copigments, such as hydroxylated flavones and hydroxycinnamic or benzoic acids. Excitation of the 7-methoxy-4-methyl-flavylium-protocatechuic acid complex results in ultrafast (240 fs) internal conversion to the ground state of the complex by way of a low-lying charge-transfer state. Thus, both uncomplexed anthocyanins, whose excited state decays by fast (5-20 ps) excited-state proton transfer, and anthocyanin-copigment complexes have highly efficient mechanisms of deactivation that are consistent with the proposed protective role of anthocyanins against excess solar radiation in the vegetative tissues of plants.
View Article and Find Full Text PDF