The design and optimization of new-generation solid-state quantum hardware absolutely requires reliable dissipation versus decoherence models. Depending on the device operational condition, the latter may range from Markov-type schemes (both phenomenological- and microscopic- like) to quantum-kinetic approaches. The primary goal of this paper is to review in a cohesive way virtues versus limitations of the most popular approaches, focussing on a few critical issues recently pointed out (see, e.
View Article and Find Full Text PDFEnergy dissipation and decoherence in state-of-the-art quantum nanomaterials and related nanodevices are routinely described and simulated via local scattering models, namely relaxation-time and Boltzmann-like schemes. The incorporation of such local scattering approaches within the Wigner-function formalism may lead to anomalous results, such as suppression of intersubband relaxation, incorrect thermalization dynamics, and violation of probability-density positivity. The primary goal of this article is to investigate a recently proposed quantum-mechanical (nonlocal) generalization ( , , 115420) of semiclassical (local) scattering models, extending such treatment to carrier-carrier interaction, and focusing in particular on the nonlocal character of Pauli-blocking contributions.
View Article and Find Full Text PDFSemiconductor devices have become indispensable for generating electromagnetic radiation in everyday applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio-frequency emitters enable wireless communications. But the terahertz region (1-10 THz; 1 THz = 10(12) Hz) between these ranges has remained largely underdeveloped, despite the identification of various possible applications--for example, chemical detection, astronomy and medical imaging.
View Article and Find Full Text PDF