Appl Environ Microbiol
November 2019
Soil bacteria adapt to diverse and rapidly changing environmental conditions by sensing and responding to environmental cues using a variety of sensory systems. Two-component systems are a widespread type of signal transduction system present in all three domains of life and typically are comprised of a sensor kinase and a response regulator. Many two-component systems function by regulating gene expression in response to environmental stimuli.
View Article and Find Full Text PDFCurr Opin Biotechnol
June 2015
The study of chemotaxis to xenobiotic chemicals in soil bacteria has revealed that the core mechanism for transduction of chemotactic signals is conserved. Responses to chemicals degraded by specialized catabolic pathways are often coordinately regulated with degradation genes, and in some cases auxiliary processes such as transport are integrated into the sensory process. In addition, degradation genes and associated chemotaxis genes carried on transmissible plasmids may facilitate the dissemination and evolution of catabolic and sensory systems.
View Article and Find Full Text PDFAromatic and hydroaromatic compounds that are metabolized through the β-ketoadipate catabolic pathway serve as chemoattractants for Pseudomonas putida F1. A screen of P. putida F1 mutants, each lacking one of the genes encoding the 18 putative methyl-accepting chemotaxis proteins (MCPs), revealed that pcaY encodes the MCP required for metabolism-independent chemotaxis to vanillate, vanillin, 4-hydroxybenzoate, benzoate, protocatechuate, quinate, shikimate, as well as 10 substituted benzoates that do not serve as growth substrates for P.
View Article and Find Full Text PDFMicrobiology (Reading)
December 2014
Soil bacteria are generally capable of growth on a wide range of organic chemicals, and pseudomonads are particularly adept at utilizing aromatic compounds. Pseudomonads are motile bacteria that are capable of sensing a wide range of chemicals, using both energy taxis and chemotaxis. Whilst the identification of specific chemicals detected by the ≥26 chemoreceptors encoded in Pseudomonas genomes is ongoing, the functions of only a limited number of Pseudomonas chemoreceptors have been revealed to date.
View Article and Find Full Text PDFPrevious studies have demonstrated that Pseudomonas putida strains are not only capable of growth on a wide range of organic substrates, but also chemotactic towards many of these compounds. However, in most cases the specific chemoreceptors that are involved have not been identified. The complete genome sequences of P.
View Article and Find Full Text PDFThe phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strain Pseudomonas putida F1 has the ability to utilize PAA as a sole carbon and energy source.
View Article and Find Full Text PDF