We have developed a multi-level virtual screening protocol to identify lead molecules from the FDA inactives database that can inhibit insulin aggregation. The method is based on the presence of structural and interaction specificity in non-native aggregation pathway protein-protein interactions. Some key challenges specific to the present problem, when compared with native protein association, include structural heterogeneity of the protein species involved, multiple association pathways, and relatively higher probability of conformational rearrangement of the association complex.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2021
We combined kinetic, thermodynamic, and structural information from single-molecule (protein folding) and two-molecule (association) explicit-solvent simulations for determination of kinetic parameters in protein aggregation nucleation with insulin as the model protein. A structural bioinformatics approach was developed to account for heterogeneity of aggregation-prone species, with the transition complex theory found applicable in modeling association kinetics involving non-native species. Specifically, the kinetic pathway for formation of aggregation-prone oligomeric species was found to contain a structurally specific dominant binding mode, making the kinetic process similar to native protein association.
View Article and Find Full Text PDF