Publications by authors named "Risse S"

Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures.

View Article and Find Full Text PDF

Maximal isometric contraction time (MICT) is critical for most motor tasks and depends on skeletal muscle blood flow at < 40% of maximal voluntary strength (MVC). Whether limb work positions associated with reduced perfusion pressure and facilitated vessel compression affect MICT is largely unknown. In 14 healthy young men we therefore assessed bilateral handgrip MICT at 15, 20, 30, 40, and 70% of MVC in horizontal forearm positions of 0.

View Article and Find Full Text PDF

We present what we believe to be a novel, geometrically scalable manufacturing method for creating compact, low-resonance frequency, and high quality factor fused silica resonators. These resonators are intended to be used in inertial sensors for measuring external disturbances of sensitive physics experiments. The novel method uses direct bonding and chemical-mechanical polishing (CMP) in order to overcome the limitations of current subtractive manufacturing methods, which face prohibitive cost and complexity as material removal increases, inherently restricting the design flexibility of the resonator.

View Article and Find Full Text PDF

Sulfur/carbon copolymers have emerged as promising alternatives for conventional crystalline sulfur cathodes for lithium-sulfur batteries. Among these, sulfur-n-1,3-diisopropenylbenzene (S/DIB) copolymers, which present a 3D network of DIB molecules interconnected via sulfur chains, have particularly shown a good performance and, therefore, have been under intensive experimental and theoretical investigations. However, their structural complexity and flexibility have hindered a clear understanding of their structural evolution during redox reactions at an atomistic level.

View Article and Find Full Text PDF

Background And Aims: Plant Ni uptake in aboveground biomass exceeding concentrations of 1000 μg g in dry weight is defined as Ni hyperaccumulation. Whether hyperaccumulators are capable of mobilizing larger Ni pools than non-accumulators is still debated and rhizosphere processes are still largely unknown. The aim of this study was to investigate rhizosphere processes and possible Ni mobilization by the Ni hyperaccumulator and to test Ni uptake in relation to a soil Ni gradient.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, dual-state reflective optical relay system based on the Alvarez system is proposed, which can be used for remote sensing applications. By keeping the image and pupil positions constant, it can be combined with a telescope to achieve two different magnifications. As a compact structure with only two moving parts, freeform optical mirrors and a nearly diffraction limited performance for the infrared wavelength 8 µm make it an attractive subsystem for space applications.

View Article and Find Full Text PDF

Sub-aperture fabrication techniques such as diamond turning, ion beam figuring, and bonnet polishing are indispensable tools in today's optical fabrication chain. Each of these tools addresses different figure and roughness imperfections corresponding to a broad spatial frequency range. Their individual effects, however, cannot be regarded as completely independent from each other due to the concurrent formation of form and finish errors, particularly in the mid-spatial frequency (MSF) region.

View Article and Find Full Text PDF

Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries.

View Article and Find Full Text PDF

The increasing interest in developing safe and sustainable energy storage systems has led to the rapid rise in attention to superconcentrated electrolytes, commonly called water-in-salt (WiS). Several works indicate that the transport properties of these liquid electrolytes are related to the presence of nanodomains, but a detailed characterization of such structure is missing. Here, the structural nano-heterogeneity of lithium WiS electrolytes, comprising lithium trifluoromethanesulfonate (LiTf) and bis(trifluoromethanesulfonyl)imide (LiTFSI) solutions as a function of concentration and temperature, was assessed by resorting to the analysis of small-angle neutron scattering (SANS) patterns.

View Article and Find Full Text PDF

Skilled reading requires information processing of the fixated and the not-yet-fixated words to generate precise control of gaze. Over the last 30 years, experimental research provided evidence that word processing is distributed across the perceptual span, which permits recognition of the fixated (foveal) word as well as preview of parafoveal words to the right of fixation. However, theoretical models have been unable to differentiate the specific influences of foveal and parafoveal information on saccade control.

View Article and Find Full Text PDF

The lithiation of crystalline silicon was studied over several cycles using operando neutron reflectometry over six cycles. A thin layer of aluminum oxide was employed as an artificial coating on the silicon to suppress the solid electrolyte interphase (SEI) layer-related aging effects. Initially, the artificial SEI prevented side effects but led to increased lithium trapping.

View Article and Find Full Text PDF

Herein, we present a detailed investigation of the electrochemically triggered formation and dissolution processes of α- and β-sulfur crystals on a monolithic carbon cathode using high-resolution synchrotron radiography (438 nm/pixel). The combination of visual monitoring with the electrical current response during cyclic voltammetry provides valuable insights into the sulfur formation and dissolution mechanism. Our observations show that the crystal growth process is mainly dictated by a rapid equilibrium between long-chain polysulfides on one side and solid sulfur/short-chain polysulfides on the other side, which is consistent with previous studies in this field.

View Article and Find Full Text PDF

Experimental and kinetic modelling studies are presented to investigate the mechanism of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by hydrogen peroxide (H O ) catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes (SPB-Pt). Due to the high stability of SPB-Pt colloidal, this reaction can be monitored precisely in situ by UV/VIS spectroscopy. The time-dependent concentration of the blue-colored oxidation product of TMB expressed by different kinetic models was used to simulate the experimental data by a genetic fitting algorithm.

View Article and Find Full Text PDF

This study reports the use of small-angle neutron scattering to investigate processes in an operating Li/S battery. The combination with impedance spectroscopy yields valuable insights into the precipitation and dissolution of lithium sulfide during 10 cycles of galvanostatic cycling. The use of a deuterated electrolyte increases strongly the sensitivity to detect the sulfur and LiS precipitates at the carbon host electrode and allows us to observe the time-dependent initial wetting of the system.

View Article and Find Full Text PDF

Using gaze-contingent display changes in the boundary paradigm during sentence reading, it has recently been shown that parafoveal word-processing difficulties affect fixations on words to the right of the boundary. Current interpretations of this post-boundary preview difficulty effect range from delayed parafoveal-on-foveal effects in parallel word-processing models to forced fixations in serial word-processing models. However, these findings are based on an experimental design that, while allowing to isolate preview difficulty effects, might have established a bias with respect to asymmetries in parafoveal preview benefit for high-frequent and low-frequent target words.

View Article and Find Full Text PDF

Ultra-precise diamond turning is the method of choice for manufacturing freeform optics. Analyzing surface errors in different spatial frequency ranges has mainly been performed in a one-dimensional representation of the power spectral density function. However, the advanced machine dynamics at the fabrication of freeform mirrors result in highly anisotropic surfaces with regular ripples in different orientations.

View Article and Find Full Text PDF

We present an operando neutron reflectometry study on the electrochemical incorporation of lithium into crystalline silicon for battery applications. Neutron reflectivity is measured from the ⟨100⟩ surface of a silicon single crystal which is used as a negative electrode in an electrochemical cell. The strong scattering contrast between Si and Li due to the negative scattering length of Li leads to a precise depth profile of Li within the Si anode as a function of time.

View Article and Find Full Text PDF

Lithium sulfur cells are the most promising candidate for the post lithium-ion battery era. Their major drawback is rapid capacity fading attributed to the complex electrochemical processes during charge and discharge which are not known precisely. Here we present for the first time a multidimensional operando measurement by combining X-ray radiography with impedance spectroscopy while galvanostatically charging and discharging a lithium sulfur cell.

View Article and Find Full Text PDF

The visual span (or ‘‘uncrowded window’’), which limits the sensory information on each fixation, has been shown to determine reading speed in tasks involving rapid serial visual presentation of single words. The present study investigated whether this is also true for fixation durations during sentence reading when all words are presented at the same time and parafoveal preview of words prior to fixation typically reduces later word-recognition times. If so, a larger visual span may allow more efficient parafoveal processing and thus faster reading.

View Article and Find Full Text PDF

Numerous studies have demonstrated effects of word frequency on eye movements during reading, but the precise timing of this influence has remained unclear. The fast priming paradigm (Sereno & Rayner, 1992) was previously used to study influences of related versus unrelated primes on the target word. Here, we used this procedure to investigate whether the frequency of the prime word has a direct influence on eye movements during reading when the prime-target relation is not manipulated.

View Article and Find Full Text PDF

Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word + 2 two words to the right of fixation.

View Article and Find Full Text PDF

Laser produced plasma sources are considered attractive for high-volume extreme-ultraviolet (EUV) lithography because of their high power at the target wavelength 13.5 nm. However, besides the required EUV light, a large amount of infrared (IR) light from the CO drive laser is scattered and reflected from the plasma as well as from the EUV mirrors in the optical system.

View Article and Find Full Text PDF

The three deleted in liver cancer genes (DLC1-3) encode Rho-specific GTPase-activating proteins (RhoGAPs). Their expression is frequently silenced in a variety of cancers. The RhoGAP activity, which is required for full DLC-dependent tumor suppressor activity, can be inhibited by the Src homology 3 (SH3) domain of a Ras-specific GAP (p120RasGAP).

View Article and Find Full Text PDF

Many studies have shown that previewing the next word n + 1 during reading leads to substantial processing benefit (e.g., shorter word viewing times) when this word is eventually fixated.

View Article and Find Full Text PDF

Artificial compound eyes are typically designed on planar substrates due to the limits of current imaging devices and available manufacturing processes. In this study, a high precision, low cost, three-layer 3D artificial compound eye consisting of a 3D microlens array, a freeform lens array, and a field lens array was constructed to mimic an apposition compound eye on a curved substrate. The freeform microlens array was manufactured on a curved substrate to alter incident light beams and steer their respective images onto a flat image plane.

View Article and Find Full Text PDF