Organic and metal-free molecules with piezoelectric and ferroelectric properties have gained wide interest for their applications in the domain of mechanical energy harvesting due to their desirable properties such as light weight, thermal stability, mechanical flexibility, feasibility to achieve high Curie temperatures, and ease of synthesis. However, the understanding and design of these materials for piezoelectric energy harvesting applications is still in its early stages. This review paper presents a comprehensive overview of the fundamental characterization of piezoelectricity for a range of organic ferro- and piezoelectric materials and their composites.
View Article and Find Full Text PDFIonic cocrystals with hydrogen bonding can form exciting materials with enhanced optical and electronic properties. We present a highly moisture-stable ammonium salt cocrystal [CHCHCH(CH)NH][CHCHCH(CH)NH][PF] () crystallizing in the polar monoclinic 2 space group. The asymmetry in was induced by its chiral substituents, while the polar order and structural stability were achieved by using the octahedral PF anion and the consequent formation of salt cocrystal.
View Article and Find Full Text PDFCyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH NH) P N Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm .
View Article and Find Full Text PDFBismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph) P] [Bi Br ] (MTPBB) and its mechanical energy harvesting capability.
View Article and Find Full Text PDF