Publications by authors named "Rishpon J"

Microbial fuel cells (MFCs) generate energy while aiding the biodegradation of waste through the activity of an electroactive mixed biofilm. Metabolic cooperation is essential for MFCs' efficiency, especially during early colonization. Thus, examining specific ecological processes that drive the assembly of anode biofilms is highly important for shortening startup times and improving MFC performance, making this technology cost-effective and sustainable.

View Article and Find Full Text PDF

Biogas is a sustainable, renewable energy source generated from organic waste degradation during anaerobic digestion (AD). AD is applied for treating different types of wastewater, mostly containing high organic load. However, AD practice is still limited due to the low quality of the produced biogas.

View Article and Find Full Text PDF

For microbial fuel cells (MFCs) to become a cost-effective wastewater treatment technology, they must produce a stable electro-active microbial community quickly and operate under realistic wastewater nutrient conditions. The composition of the anodic-biofilm and planktonic-cells communities was followed temporally for MFCs operated under typical laboratory phosphate concentrations (134mgL(-1)P) versus wastewater phosphate concentrations (16mgL(-1)P). A stable peak voltage was attained two-fold faster in MFCs operating under lower phosphate concentration.

View Article and Find Full Text PDF

Dense arrays of self-assembled nanostructures are highly important for the fabrication of high-performance sensors of large surface area. The organized incorporation of novel biocompatible organic nanostructures into extremely sensitive amperometric biosensors is demonstrated. Peptide nanoforest biosensors for phenol detection were 17-fold more sensitive than uncoated electrode and more sensitive than those modified with carbon nanotubes or combined coating.

View Article and Find Full Text PDF

Whole-cell bio-chips for functional sensing integrate living cells on miniaturized platforms made by micro-system-technologies (MST). The cells are integrated, deposited or immersed in a media which is in contact with the chip. The cells behavior is monitored via electrical, electrochemical or optical methods.

View Article and Find Full Text PDF

One of the recently developed monitoring technologies involves the use of whole cell biosensors. Such biosensors can be constructed to detect expression of genes of interest and the effect of the environment on this expression. These biosensors are essential for monitoring environmental stress, such as general toxicity or specific toxicity caused by pollutants.

View Article and Find Full Text PDF

This paper reports the development of an electrochemical biosensor for the detection of formaldehyde in aqueous solution, based on the coupling of the enzyme formaldehyde dehydrogenase and a carbon nanotubes (CNT)-modified screen-printed electrode (SPE). We monitored the amperometric response to formaldehyde released from U251 human glioblastoma cells situated in the biosensor chamber in response to treatment with various anticancer prodrugs of formaldehyde and butyric acid. The current response was higher for prodrugs that release two molecules of formaldehyde (AN-193) than for prodrugs that release only one molecule of formaldehyde (AN-1, AN-7).

View Article and Find Full Text PDF

Recombinant antibodies provide an emerging strategy in the development of new immunosensors. In particular, single chain antibodies (scFvs) can be isolated and expressed in bacterial systems that also allow their in vitro manipulation at the gene level. In this work, we present for the first time results of single-chain phage displayed antibodies combined with amperometric detection and its application as an immunosensor.

View Article and Find Full Text PDF

We describe a new method for rapid, sensitive, and high-throughput detection of colon cancer cells' response to differentiation therapy, using a novel electrochemical lab-on-a-chip system. Differentiation-inducing agents such as butyric acid and its derivatives were introduced to miniature colon cancer samples within the nanovolume chip chambers. The efficacy of each of the differentiation-inducing agents was evaluated by electrochemical detection of the cellular enzymatic activity level, whereas reappearance of normal enzymatic activity denotes effective therapy.

View Article and Find Full Text PDF

We describe here a bacterial sensor for electrochemical detection of toxic chemicals. The sensor constitutes recombinant bacteria harboring plasmids encoding the fabA and fabR genes and has high-resolution amperometric response to membrane-damaging chemicals. For example, it can detect phenol at concentrations ranging between 1.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic microorganisms is an important issue for the safety and security of our society. Here we describe the use of a sensitive, inexpensive, amperometric, phage-based biosensor for the detection of extremely low concentrations of Bacillus cereus and Mycobacterium smegmatis as models for Bacillus anthracis (the causative agent of anthrax) and for Mycobacterium tuberculosis (the causative agent of tuberculosis), respectively. The detection procedure developed here enabled the determination of bacteria at a low concentration of 10 viable cells/mL within 8 h.

View Article and Find Full Text PDF

Screening of new catalysts for aldolase activity is a major task in bioorganic chemistry. For this purpose, fast and convenient methods are required for the detection of the catalysts. We have developed the first amperometric assay for aldol or retro-aldol catalytic activity.

View Article and Find Full Text PDF

The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.

View Article and Find Full Text PDF

An electrochemical nano-biochip for water toxicity detection is presented. We describe chip design, fabrication, and performance. Bacteria, which have been genetically engineered to respond to environmental stress, act as a sensor element and trigger a sequence of processes, which leads to generation of electrical current.

View Article and Find Full Text PDF

Here we describe a novel electrochemical biosensing platform based on biocompatible, well-ordered, self-assembled diphenylalanine peptide nanotubes. Voltammetric and time-based amperometric techniques were applied to demonstrate the ability of the peptide nanotubes to improve the electrochemical parameters of graphite electrodes. The findings clearly show that this novel class of peptide nanotubes provides an attractive component for future electroanalytical devices.

View Article and Find Full Text PDF

The goal of this study was to determine the effects of various compounds on the 17-beta-estradiol-induced dimerization of the human estrogen receptor alpha (hERalpha), a nuclear transcription factor. For this purpose, we used a modified yeast two-hybrid (YTH) bioassay designed to study protein-protein interactions, based on the electrochemical monitoring of hERalpha dimerization and detected as beta-D-galactosidase reporter gene activity in a synthetic substrate p-aminophenyl-beta-D-galactopyranoside (pAPG). Compared with 17-beta-estradiol activity, genistein, bisphenol-A (BPA), and naringenin induced dimerization to a lower extent by four, five and six magnitudes of orders of magnitude, respectively.

View Article and Find Full Text PDF

We describe a reporter phagemid system for the specific amperometric detection of bacteria. We constructed a phagemid a bacteriophage containing a bacterial plasmid using the M13KO7 helper phage and a commercial plasmid, pFLAG-ATS-BAP, which contains a gene encoding for a reporter enzyme, alkaline phosphatase. In the bacteria, the enzyme reacts with the substrate, p-aminophenyl phosphate, in the periplamic space that separates the outer plasma membrane from the cell wall.

View Article and Find Full Text PDF

In this article, we describe a bacterial whole cell electrochemical biosensors system that can be used for monitoring aromatic hydrocarbons. These bacterial biosensors are based on fusions of a promoter that is sensitive to aromatic compounds (the promoter region of the xylS gene and the xylR gene coding for the transcriptional regulator of the xyl operon) to reporter genes that can be monitored electrochemically at real-time and on-line. The xylS promoter was fused upstream of two promoterless genes coding the lacZ gene and phoA.

View Article and Find Full Text PDF

Efficient tools for on-line and in situ monitoring of environmental pollutants are required to provide early warning systems. In addition, such tools can contribute important information on the progress of various remediation treatments. One of the recently developed monitoring technologies involves the use of whole-cell biosensors.

View Article and Find Full Text PDF

In this work we present a modified yeast two-hybrid bioassay for the highly sensitive detection of protein-protein interactions, based on the electrochemical monitoring of beta-D-galactosidase reporter gene activity, using p-aminophenyl-beta-D-galactopyranoside (PAPG) as a synthetic substrate. In a model system, the sensitive detection of 17-beta-estradiol was achieved at concentrations as low as 10(-11)M (approx 2 pg/ml) by monitoring 17-beta-estradiol receptor dimerization after exposure to 17-beta-estradiol. The sensitivity of this system was higher than that of standard optical methods by three orders of magnitude.

View Article and Find Full Text PDF

Here, we describe a novel electrochemical method for the rapid identification and quantification of pathogenic and polluting bacteria. The design incorporates a bacteriophage, a virus that recognizes, infects, and lyses only one bacterial species among mixed populations, thereby releasing intracellular enzymes that can be monitored by the amperometic measurement of enzymatic activity. As a model system, we used virulent phage typing and cell-marker enzyme activity (beta-D-galactosidase), a combination that is specific for the bacterial strain Escherichia coli (K-12, MG1655).

View Article and Find Full Text PDF

Highly sensitive electrochemical biosensors offer precision, sensitivity, rapidity, and ease of operation for on-site environmental analysis. An electrochemical biosensor is an analytical device in which a specific biological recognition element (bioreceptor) is integrated within or intimately associated with an electrode (transducer) that converts the recognition event to a measurable electrical signal for the purpose of detecting a target compound (analyte) in solution. The signal generated allows both qualitative and quantitative measurements of an analyte in real time.

View Article and Find Full Text PDF

The increasing concern worldwide over the adverse effects of endocrine disruptors on human health has created a need for screening systems to detect xenoestrogens, a diverse group of environmental chemicals that mimic estrogenic actions and are hypothesized to decrease male fertility. Here, we describe a novel, class-selective detector that uses fast impedance measurements to monitor the binding of estrogen and xenoestrogens to a native estrogen receptor. We embedded the receptor in synthetic lipid bilayers attached to gold electrodes.

View Article and Find Full Text PDF

The quantitative determination of total and fecal coliforms, as indicators of fecal pollution, is essential for water quality control. We developed a sensitive, inexpensive amperometric enzyme biosensor based on the electrochemical detection of beta-galactosidase activity, using p-amino-phenyl-beta-D-galactopyranoside as substrate, for determining the density of coliforms, represented by Escherichia coli and Klebsiella pneumoniae. The specific detection of E.

View Article and Find Full Text PDF

We describe a disposable, amperometric micro flow injection electrochemical biosensor that can be applied to the identification and quantification of highly toxic organophosphorus (OP) compounds in the environment, on the spot and in a short time. The system traces very small quantities of OP by monitoring the enzymatic reaction of acetylcholine esterase (AChE) and its inhibition. The sensor is sensitive, rapid, small, inexpensive, disposable and can be operated by non-professional technicians.

View Article and Find Full Text PDF