Publications by authors named "Rishikesh Pandey"

Medical applications of optical technology have increased tremendously in recent decades. Label-free techniques have the unique advantage of investigating biological samples in vivo without introducing exogenous agents. This is especially beneficial for a rapid clinical translation as it reduces the need for toxicity studies and regulatory approval for exogenous labels.

View Article and Find Full Text PDF

This paper investigates how different institutions of Loba communities of the Upper Mustang work together and facilitate the community to cope with the environmental dynamics in the region. The indigenous institutions are place-based, and their evolution is concerned with reducing vulnerability and enhancing the resilience capacity of place-based communities to cope with and adapt to local natural and socio-cultural environmental dynamics. The paper is based on anthropological fieldwork.

View Article and Find Full Text PDF

Context.—: Repeated surgery is necessary for 20% to 40% of breast conservation surgeries owing to the unavailability of any adjunctive, accurate, and objective tool in the surgeon's hand for real-time margin assessment to achieve the desired balance of oncologic and cosmetic outcomes.

Objective.

View Article and Find Full Text PDF

The recent advent of whole slide imaging (WSI) systems has moved digital pathology closer to diagnostic applications and clinical practices. Integrating WSI with machine learning promises the growth of this field in upcoming years. Here we report the design and implementation of a handheld, colour-multiplexed, and AI-powered ptychographic whole slide scanner for digital pathology applications.

View Article and Find Full Text PDF

Tricarboxylic acid (TCA) cycle is a major hub for catabolic and anabolic reactions, yet cellular metabolic adaptations following its inhibition are largely unknown. Using multi-tiered omics approaches, Ryan et al. have shown convergent activation of the integrated stress response (ISR) through ATF4-mediated rewiring of cellular amino acid and redox metabolic pathways.

View Article and Find Full Text PDF

Current treatment strategies for osteoarthritis (OA) predominantly address symptoms with limited disease-modifying potential. There is a growing interest in the use of adipose-derived stem cells (ADSCs) for OA treatment and developing biomimetic injectable hydrogels as cell delivery systems. Biomimetic injectable hydrogels can simulate the native tissue microenvironment by providing appropriate biological and chemical cues for tissue regeneration.

View Article and Find Full Text PDF

The role of human microbiota in cancer initiation and progression is recognized in recent years. In order to investigate the interactions between cancer cells and microbes, a systematic analysis using various emerging techniques is required. Owing to the label-free, non-invasive and molecular fingerprinting characteristics, vibrational spectroscopy is uniquely suited to decode and understand the relationship and interactions between cancer and the microbiota at the molecular level.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is one of the most common malignancies that account for nearly one-third of all pediatric cancers. The current diagnostic assays are time-consuming, labor-intensive, and require expensive reagents. Here, we report a label-free approach featuring diffraction phase imaging and Raman microscopy that can retrieve both morphological and molecular attributes for label-free optical phenotyping of individual B cells.

View Article and Find Full Text PDF

Raman spectroscopy has emerged as a non-invasive and versatile diagnostic technique due to its ability to provide molecule-specific information with ultrahigh sensitivity at near-physiological conditions. Despite exhibiting substantial potential, its translation from optical bench to clinical settings has been impacted by associated limitations. This perspective discusses recent clinical and biomedical applications of Raman spectroscopy and technological advancements that provide valuable insights and encouragement for resolving some of the most challenging hurdles.

View Article and Find Full Text PDF

Identification of the metastatic potential represents one of the most important tasks for molecular imaging of cancer. While molecular imaging of metastases has witnessed substantial progress as an area of clinical inquiry, determining precisely what differentiates the metastatic phenotype has proven to be more elusive. In this study, we utilize both the morphological and molecular information provided by 3D optical diffraction tomography and Raman spectroscopy, respectively, to propose a label-free route for optical phenotyping of cancer cells at single-cell resolution.

View Article and Find Full Text PDF

Inflammation leads to chondrocyte senescence and cartilage degeneration, resulting in osteoarthritis (OA). Adipose-derived stem cells (ADSCs) exert paracrine effects protecting chondrocytes from degenerative changes. However, the lack of optimum delivery systems for ADSCs limits its use in the clinic.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying and classifying leukemia cells quickly and without labels is difficult, creating an opportunity for new diagnostic methods.* -
  • Quantitative phase imaging can differentiate cell types by visualizing their physical characteristics, and machine learning is used to analyze these images for identifying healthy and cancerous B cells.* -
  • Our study indicates that cancer cells have greater mass and volume than healthy B cells, and machine learning offers a promising, efficient way to classify cell types, which could improve diagnoses in clinical settings.*
View Article and Find Full Text PDF

CD8 T cells constitute an essential compartment of the adaptive immune system. During immune responses, naı̈ve T cells become functional, as they are primed with their cognate determinants by the antigen presenting cells. Current methods of identifying activated CD8 T cells are laborious, time-consuming and expensive due to the extensive list of required reagents.

View Article and Find Full Text PDF

Polymer-piezoceramic composites show mutual properties of piezoceramics and polymers that can be efficiently utilized in energy harvesting applications. Here we fabricated 0-3 composite films using high-performance low-lead piezoceramic (x)Bi(NiZr)O-(1-x)PbTiO (BNZ-PT) as ceramic filler and polyvinylidene fluoride (PVDF) as polymer matrix. Unlike the conventional morphotropic phase boundary piezoelectrics such as the (1-x)PbTiO-(x)PbZrO, the large piezoelectric response of the BNZ-PT can be obtained by poling-induced cubic-like-to-tetragonal phase transformation.

View Article and Find Full Text PDF

Label-free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label-free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho-molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation.

View Article and Find Full Text PDF

Glycated hemoglobin, HbA1c, is an important biomarker that reveals the average value of blood glucose over the preceding 3 months. While significant recent attention has been focused on the use of optical and direct molecular spectroscopic methods for determination of HbA1c, a facile test that minimizes sample preparation needs and turnaround time still remains elusive. Here, we report a label-free approach for identifying low, mid and high-HbA1c groups in hemolysate and in whole blood samples featuring resonance Raman (RR) spectroscopy and support vector machine (SVM)-based classification of spectral patterns.

View Article and Find Full Text PDF

Piezoelectric actuators transform electrical energy into mechanical energy, and because of their compactness, quick response time and accurate displacement, they are sought after in many applications. Polycrystalline piezoelectric ceramics are technologically more appealing than single crystals due to their simpler and less expensive processing, but have yet to display electrostrain values that exceed 1%. Here we report a material design strategy wherein the efficient switching of ferroelectric-ferroelastic domains by an electric field is exploited to achieve a high electrostrain value of 1.

View Article and Find Full Text PDF

Otitis media with effusion (OME) is an important and common condition affecting hearing in pediatric patients characterized by the presence of fluid in the middle ear space. The fluid is normally described as serous or mucoid based on differences in the fluid viscosity. The differential diagnosis of two OMEs, namely serous and mucoid is of significant clinical value because while the former is self-limiting, surgical procedure is commonly required for the latter.

View Article and Find Full Text PDF

The authors devised an efficient method for ticagrelor removal from blood using sorbent hemadsorption. Ticagrelor removal was measured in 2 sets of in vitro experiments. The first set was a first-pass experiment using bovine serum albumin (BSA) solution pre-incubated with ticagrelor, whereas the second set, performed in a recirculating manner, used human blood mixed with ticagrelor.

View Article and Find Full Text PDF

The successful development of a noninvasive blood glucose sensor that can operate reliably over sustained periods of time has been a much sought after but elusive goal in diabetes management. Since diabetes has no well-established cure, control of elevated glucose levels is critical for avoiding severe secondary health complications in multiple organs including the retina, kidney and vasculature. While fingerstick testing continues to be the mainstay of blood glucose detection, advances in electrochemical sensing-based minimally invasive approaches have opened the door for alternate methods that would considerably improve the quality of life for people with diabetes.

View Article and Find Full Text PDF

Driven by the need to engineer robust surface coatings for medical devices to prevent infection and sepsis, incorporation of nanoparticles has surfaced as a promising avenue to enhance non-fouling efficacy. Microbial synthesis of such nanoscale metallic structures is of substantive interest as this can offer an eco-friendly, cost-effective, and sustainable route for further development. Here we present a -derived fungal route for synthesis of silver nanoparticles, which display significant antimicrobial properties when tested against six pathological bacterial strains (, and ) and three pathological fungal strains (, and ).

View Article and Find Full Text PDF

The unprecedented capability to control and characterize materials on the nanometer scale has led to the rapid expansion of nanostructured materials. The expansion of nanotechnology, resulting into myriads of consumer and industrial products, causes a concern among the scientific community regarding risk associated with the release of nanomaterials in the environment. Bioavailability of excess nanomaterials ultimately threatens ecosystem and human health.

View Article and Find Full Text PDF

Biogenic synthesis of metal nanoparticles is of considerable interest, as it affords clean, biocompatible, nontoxic, and cost-effective fabrication. Driven by their ability to withstand variable extremes of environmental conditions, several microorganisms, notably bacteria and fungi, have been investigated in the never-ending search for optimal nanomaterial production platforms. Here, we present a hitherto unexplored algal platform featuring Chlorella pyrenoidosa, which offers a high degree of consistency in morphology of synthesized silver nanoparticles.

View Article and Find Full Text PDF

Despite its widespread prevalence, middle ear pathology, especially the development of proliferative lesions, remains largely unexplored and poorly understood. Diagnostic evaluation is still predicated upon a high index of clinical suspicion on otoscopic examination of gross morphologic features. We report the first technique that has the potential to non-invasively identify two key lesions, namely cholesteatoma and myringosclerosis, by providing real-time information of differentially expressed molecules.

View Article and Find Full Text PDF

In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge.

View Article and Find Full Text PDF