Purpose: Sensitive patient data cannot be easily shared/analyzed, severely limiting the innovative progress of research, specifically for marginalized/under-represented populations. Existing methods of deidentification are subject to data breaches. The objective of this study was to develop a neural network capable of generating a synthetic version of data for patients with novel postoperative metastatic cancer.
View Article and Find Full Text PDFPatients with disseminated cancer at higher risk for postoperative mortality see improved outcomes with altered clinical management. Being able to risk stratify patients immediately after their index surgery to flag high risk patients for healthcare providers is vital. The combination of physician uncertainty and a demonstrated optimism bias often lead to an overestimation of patient life expectancy which can precent proper end of life counseling and lead to inadequate postoperative follow up.
View Article and Find Full Text PDF