Oral cancer is a significant public health issue, being the eighth most common cancer worldwide with over 300,000 cases diagnosed annually. Early diagnosis and adequate management of oral potentially malignant disorders (OPMDs) before transformation into oral squamous cell carcinoma (OSCC) is critical to reduce deaths, morbidity, and to improve overall prognosis. MicroRNAs (miRNAs) are small noncoding RNAs involved in the post-transcriptional regulation of protein expression and implicated in the control of numerous cellular pathways and impacting physiological, developmental, and pathological processes.
View Article and Find Full Text PDFPurpose: To measure the adhesion of the denture characterizing composite to heat-cured, CAD/CAM and 3D printed denture base resins.
Methods And Materials: Two different denture characterizing composites with different viscosities (SR Nexco; high viscosity (SR) and Kulzer Cre-active; low viscosity (K)) and three denture base resins (Heat cure, CAD-milled and 3D printed) were investigated. 60 beams (25 × 4 × 3 mm) were fabricated for each denture base resin; 30 were bonded to SR and 30 to K to form a beam 50 × 4 × 3 mm.
Aim: To investigate load-deformation properties of Thiel-embalmed human oral mucosa tissues and to compare three different anatomical regions in terms of mechanical, histological and ultrastructural characteristic with focus on the extracellular matrix.
Materials And Methods: Thirty specimens from three different regions of the oral cavity: attached gingiva, buccal mucosa and the hard palate were harvested from two Thiel-embalmed cadavers. Mechanical properties were obtained, combining strain evaluation and digital image correlation in a standardised approach.
Statement Of Problem: The surface hardness and roughness of different glaze materials for denture base acrylic resins have not been well reported.
Purpose: The purpose of the study was to measure the surfaces hardness, elastic modulus and surface roughness of 5 different light-polymerized glaze materials for poly methyl methacrylate (PMMA) denture base materials.
Material And Methods: A total of 210 PMMA resin specimens (10 × 5 × 2 mm) were prepared (30 per group); control group was untreated, group 1 was surface treated with conventional pumice and high shine paste; group 2 to 6 specimens were glaze coated with different commercially available denture glaze materials.
Aim: To record the pulp temperature at different tooth sites during fabrication of two different temporary crown systems.
Methodology: Two temporary crown systems were investigated; a conventional direct fabricated and a preformed thermoplastic resin system. Extracted caries-free human teeth (incisor, premolar and molar) were prepared for full coverage ceramic restoration with roots sectioned below the cemento-enamel junction.
Purpose: To establish the fracture toughness (K ) and flexural bond strength of commercially available denture teeth to heat cured, CAD/CAM and 3D printed denture-based resins (DBRs).
Materials And Methods: Three types of DBRs (Heat cure, CAD-milled and 3D printed) and four different types of commercial denture teeth (Unfilled PMMA, double cross-linked PMMA, PMMA with nanofillers and 3D printed resin teeth) were investigated. DBR and epoxy embedded denture teeth (n = 30 per group) specimen beams (25 × 4 × 3 mm) were fabricated.
The study investigated the cooling efficiency of different numbers of water coolant ports on high-speed handpieces (HSH) under cooling conditions used in clinical practice. Twenty-four groove cuts with water on and nine cuts without water were made on extracted human premolars using three HSHs with different port configurations. Thermocouples were placed in the pulp chambers and temperature changes were recorded with 1-, 3- and 4-coolant port handpieces.
View Article and Find Full Text PDF