Publications by authors named "Rishi D Pathirana"

Live attenuated influenza vaccines (LAIV) typically induce a poor hemagglutination inhibition (HI) response, which is the standard correlate of protection for inactivated influenza vaccines. The significance of the HI response is complicated because the LAIV vaccine primarily induces the local mucosal immune system, while the HI assay measures the circulating serum antibody response. However, age and pre-existing immunity have been identified as important factors affecting LAIV immunogenicity.

View Article and Find Full Text PDF

Influenza vaccination often results in a large percentage of low responders, especially in high-risk groups. As a first line of defense, natural killer (NK) cells play a crucial role in the fight against infections. However, their implication with regard to vaccine responsiveness is insufficiently assessed.

View Article and Find Full Text PDF

Background: Influenza remains a major threat to public health. Live-attenuated influenza vaccines (LAIV) have been shown to be effective, particularly in children. Follicular T helper (TFH) cells provide B-cell help and are crucial for generating long-term humoral immunity.

View Article and Find Full Text PDF

Outer membrane vesicles were first described approximately 50 years ago and for many years were considered to be an artifact of bacterial growth. Since that initial discovery, it has become evident that outer membrane vesicles are produced by almost all Gram-negative bacteria as part of their normal growth in addition to driving pathogenesis within the host. More recently, the identification of membrane vesicle (MV) production by some Gram-positive bacteria, parasites, fungi, mycobacteria and infected host cells has significantly broadened the field of MV research and emphasized their importance to pathogenesis.

View Article and Find Full Text PDF

Background: Tonsils play a key role in eliciting immune responses against respiratory pathogens. Little is known about how tonsils contribute to the local immune response after intranasal vaccination. Here, we uniquely report the mucosal humoral responses in tonsils and saliva after intranasal live attenuated influenza vaccine (LAIV) vaccination in children.

View Article and Find Full Text PDF

Background: We analyzed the impact of the anti-T-cell agents basiliximab and antithymocyte globulins (ATG) on antibody and cell-mediated immune responses after influenza vaccination in solid-organ transplant recipients.

Methods: 71 kidney and heart transplant recipients (basiliximab [n=43] and ATG [n=28]) received the trivalent influenza vaccine. Antibody responses were measured at baseline and 6 weeks post-vaccination by hemagglutination inhibition assay; T-cell responses were measured by IFN-γ ELISpot assays and intracellular cytokine staining (ICS); and influenza-specific memory B-cell (MBC) responses were evaluated using ELISpot.

View Article and Find Full Text PDF

Background And Methods: Highly pathogenic avian influenza (HPAI) viruses constitute a pandemic threat and the development of effective vaccines is a global priority. Sixty adults were recruited into a randomized clinical trial and were intramuscularly immunized with two virosomal vaccine H5N1 (NIBRG-14) doses (21 days apart) of 30 μg HA alone or 1.5, 7.

View Article and Find Full Text PDF

Healthcare workers (HCW) were prioritized for vaccination during the 2009 influenza A(H1N1)pdm09 pandemic. We conducted a clinical trial in October 2009 where 237 HCWs were immunized with a AS03-adjuvanted A(H1N1)pdm09 monovalent vaccine. In the current study, we analyzed the homologous and cross-reactive H1N1 humoral responses using prototype vaccine strains dating back to 1977 by the haemagglutinin inhibition (HI), single radial hemolysis SRH), antibody secreting cell (ASC) and memory B cell (MBC) assays.

View Article and Find Full Text PDF

Highly pathogenic avian influenza H5N1 infection remains a public health threat and vaccination is the best measure of limiting the impact of a potential pandemic. Mucosal vaccines have the advantage of eliciting immune responses at the site of viral entry, thereby preventing infection as well as further viral transmission. In this study, we assessed the protective efficacy of hemagglutinin (HA) from the A/Indonesia/05/05 (H5N1) strain of influenza virus that was produced by transient expression in plants.

View Article and Find Full Text PDF

Background: The live attenuated influenza vaccine (LAIV) is the preferred vaccine for children, but the mechanisms behind protective immune responses are unclear, and the duration of immunity remains to be elucidated. This study reports on the longevity of B-cell and T-cell responses elicited by the LAIV.

Methods: Thirty-eight children (3-17 years old) were administered seasonal LAIV.

View Article and Find Full Text PDF

Background: Influenza H5N1 virus constitutes a pandemic threat and development of effective H5N1 vaccines is a global priority. Anti-influenza antibodies directed towards the haemagglutinin (HA) define a correlate of protection. Both antibody concentration and avidity may be important for virus neutralization and resolving influenza disease.

View Article and Find Full Text PDF

Background: Highly pathogenic avian influenza A/H5N1 virus remains a potential pandemic threat, and it is essential to continue vaccine development against this subtype. A local mucosal immune response in the upper respiratory tract may stop influenza transmission. It is therefore important to develop effective intranasal pandemic influenza vaccines that induce mucosal immunity at the site of viral entry.

View Article and Find Full Text PDF

Background: We conducted a clinical trial in October 2009 to evaluate the immunogenicity of the AS03-adjuvanted influenza vaccine (pH1N1 vaccine) in health care workers (HCWs). By 2 weeks after vaccination, 97% had protective hemagglutinin inhibition (HI) titers (≥ 40) however, 16% were low responders (LR) and failed to maintain a protective response 90 days after vaccination.

Methods: We analyzed the humoral responses (HI, antibody-secreting cell [ASC], and serum immunoglobulin G [IgG]) in 15 LRs and 25 control HCWs.

View Article and Find Full Text PDF

Background: Vaccination is the best measure to protect the population against a potential influenza H5N1 pandemic, but 2 doses of vaccine are needed to elicit protective immune responses. An immunological marker for H5N1 vaccine effectiveness is needed for early identification of the best vaccine candidate.

Methods: We conducted a phase I clinical trial of a virosomal H5N1 vaccine adjuvanted with Matrix M.

View Article and Find Full Text PDF

The RgpA-Kgp proteinase-adhesin complexes of Porphyromonas gingivalis were observed, using immunostaining, in human gingival tissue associated with periodontitis but not in healthy tissue. The staining pattern suggested a concentration gradient from the subgingival plaque into the subjacent gingival connective tissue. Intense immunostaining was observed in areas displaying gross disturbance of tissue architecture.

View Article and Find Full Text PDF

Porphyromonas gingivalis strains W50 and ATCC 33277 were shown to bind to cultured human fibroblast (MRC-5) cells using flow cytometry. As the concentration of P. gingivalis strain W50 cells was increased relative to the concentration of MRC-5 cells, the number of W50 cells bound per MRC-5 cell increased, as did the percentage of MRC-5 cells with bacteria bound.

View Article and Find Full Text PDF

Porphyromonas gingivalis is a Gram-negative bacterium strongly associated with chronic periodontitis, an inflammatory oral disease. A major virulence factor common to all characterized strains of P. gingivalis is the RgpA-Kgp proteinase-adhesin complexes (RgpA-Kgp complexes).

View Article and Find Full Text PDF

By using fluorescence microscopy, fluorescently labeled Porphyromonas gingivalis W50 was shown to adhere to oral epithelial (KB) cells as discrete cells or small cell aggregates, whereas P. gingivalis ATCC 33277 bound as large cell aggregates. Flow cytometric analysis showed that for P.

View Article and Find Full Text PDF

The contributions of three proteinase genes (rgpA, rgpB, and kgp) to the virulence of Porphyromonas gingivalis W50 were investigated in the murine periodontitis model. Mice were orally inoculated with eight doses (1 x 10(10) cells per dose) of rgpA, rgpB, kgp, rgpA rgpB, or rgpA rgpB kgp isogenic mutants, and the level of alveolar bone loss, immune response induced, and number of bacterial cells per half maxilla were compared with those of animals inoculated with wild-type P. gingivalis.

View Article and Find Full Text PDF

Proteinase-adhesin complexes of Porphyromonas gingivalis wild-type and RgpA and Kgp mutants were extracted using a Triton X-114 procedure and purified using arginine-affinity chromatography. The complexes were then characterized by peptide mass fingerprinting (PMF) and their equilibrium binding constants, immunogenicity and ability to induce protection as vaccines in the murine lesion model determined. The Triton X-114 procedure resulted in consistently higher yield and specific activity of the wild-type (wt) complex compared with that produced by the previously published sonication method.

View Article and Find Full Text PDF

Porphyromonas gingivalis, a pathogen associated with periodontitis, bound to fibrinogen, fibronectin, hemoglobin, and collagen type V with a similar profile to that of its major virulence factor, the cell surface RgpA-Kgp proteinase-adhesin complex. Using peptide-specific, purified Abs in competitive inhibition ELISAs and epitope mapping assays, we have identified potential adhesin binding motifs (ABMs) of the RgpA-Kgp complex responsible for binding to host proteins. The RgpA-Kgp complex and synthetic ABM and proteinase active site peptides conjugated to diphtheria toxoid, when used as vaccines, protected against P.

View Article and Find Full Text PDF