Publications by authors named "Rishabh M Jain"

Advances in the separation and functionalization of single walled carbon nanotubes (SWCNT) by their electronic type have enabled the development of ratiometric fluorescent SWCNT sensors for the first time. Herein, single chirality SWCNT are independently functionalized to recognize either nitric oxide (NO), hydrogen peroxide (H(2)O(2)), or no analyte (remaining invariant) to create optical sensor responses from the ratio of distinct emission peaks. This ratiometric approach provides a measure of analyte concentration, invariant to the absolute intensity emitted from the sensors and hence, more stable to external noise and detection geometry.

View Article and Find Full Text PDF

Recently, several important advances in techniques for the separation of single-walled carbon nanotubes (SWNTs) by chiral index have been developed. These new methods allow for the separation of SWNTs through selective adsorption and desorption of different (n,m) chiral indices to and from a specific hydrogel. Our group has previously developed a kinetic model for the chiral elution order of separation; however, the underlying mechanism that allows for this separation remains unknown.

View Article and Find Full Text PDF

We propose a kinetic model that describes the separation of single-chirality semiconducting carbon nanotubes based on the chirality-selective adsorption to specific hydrogels. Experimental elution profiles of the (7,3), (6,4), (6,5), (8,3), (8,6), (7,5), and (7,6) species are well described by an irreversible, first-order site association kinetic model with a single rate constant describing the adsorption of each SWNT to the immobile gel phase. Specifically, we find first-order binding rate constants for seven experimentally separated nanotubes normalized by the binding site molarity (M(θ)): k₇,₃ = 3.

View Article and Find Full Text PDF

We demonstrate a polymer-free carbon-based photovoltaic device that relies on exciton dissociation at the SWNT/C(60) interface, as shown in the figure. Through the construction of a carbon-based photovoltaic completely free of polymeric active or transport layers, we show both the feasibility of this novel device as well as inform the mechanisms for inefficiencies in SWNTs and carbon based solar cells.

View Article and Find Full Text PDF

We describe the high-throughput screening of a library of 30 boronic acid derivatives to form complexes with sodium cholate suspended single-walled carbon nanotubes (SWNTs) to screen for their ability to reversibly report glucose binding via a change in SWNT fluorescence. The screening identifies 4-cyanophenylboronic acid which uniquely causes a reversible wavelength red shift in SWNT emission. The results also identify 4-chlorophenylboronic acid which demonstrates a turn-on fluorescence response when complexed with SWNTs upon glucose binding in the physiological range of glucose concentration.

View Article and Find Full Text PDF

There is a general need for the engineering of protein-like molecules that organize into geometrically specific superstructures on molecular surfaces, directing further functionalization to create richly textured, multilayered assemblies. Here we describe a computational approach whereby the surface properties and symmetry of a targeted surface define the sequence and superstructure of surface-organizing peptides. Computational design proceeds in a series of steps that encode both surface recognition and favorable intersubunit packing interactions.

View Article and Find Full Text PDF