We report a study on granular matter with and without small additions of silicon oil, under low-frequency and large amplitude oscillatory shear strain under constant normal pressure, by running experiments with a rotational rheometer with a cup-and-plate geometry. We analysed the expansion with the Chebyshev polynomials of the orthogonal decomposition of stress-strain Lissajous-Bowditch loops. We found the onset of the strain amplitude for the yielding regime indicated a regime change from filament-like structures of grains to grain rearrangements for the dry granulate and from oscillations to the breaking and regeneration of liquid bridges for wet granulates.
View Article and Find Full Text PDFThis article proposes a process to prepare fully bio-based elastomer nanocomposites based on polyfarnesene and cellulose nanocrystals (CNC). To improve the compatibility of cellulose with the hydrophobic matrix of polyfarnesene, the surface of CNC was modified via plasma-induced polymerization, at different powers of the plasma generator, using a -β-farnesene monomer in the plasma reactor. The characteristic features of plasma surface-modified CNC have been corroborated by spectroscopic (XPS) and microscopic (AFM) analyses.
View Article and Find Full Text PDFTowards the development of eco-friendly alternatives of elastomeric materials, which can replace petroleum-based materials, it is crucial to explore different monomers and catalytic systems in order to find the best possible combinations for specific applications. Herein, we report the synthesis of polyocimene coordination polymerization using two different neodymium-based catalysts (NdV and Nd(Oi-Pr)), activated by alkylaluminums/organoboron compounds. By varying the type of co-catalyst species, halide donors, and reaction parameters, we have demonstrated the possibility to obtain polymers with a controlled microstructure and tunable properties, in terms of molecular weight characteristics and kinetics.
View Article and Find Full Text PDFThis article proposes a method to produce bio-elastomer nanocomposites, based on polyfarnesene or polymyrcene, reinforced with surface-modified graphene oxide (GO). The surface modification is performed by grafting alkylamines (octyl-, dodecyl-, and hexadecylamine) onto the surface of GO. The successful grafting was confirmed spectroscopic (FTIR and Raman) and X-ray diffraction techniques.
View Article and Find Full Text PDFPerformance and properties of materials may strongly depend on processing conditions. This is particularly so for polymers, which often have relaxation times much longer than the processing times and therefore may adopt preparation dependent nonequilibrated molecular conformations that potentially cause novel properties. However, so far it was not possible to predictably and quantitatively relate processing steps and resulting properties of polymer films.
View Article and Find Full Text PDF