We develop an efficient algorithm to implement the recently introduced binary tree state (BTS) ansatz on a classical computer. BTS allows a simple approximation to permanents arising from the computationally intractable antisymmetric product of interacting geminals and respects size-consistency. We show how to compute BTS overlap and reduced density matrices efficiently.
View Article and Find Full Text PDFThe antisymmetrized geminal power (AGP) is equivalent to the number projected Bardeen-Cooper-Schrieffer (PBCS) wave function. It is also an elementary symmetric polynomial (ESP) state. We generalize previous research on deterministically implementing the Dicke state to a state preparation algorithm for an ESP state, or equivalently AGP, on a quantum computer.
View Article and Find Full Text PDFWe show how to construct a linearly independent set of antisymmetrized geminal power (AGP) states, which allows us to rewrite our recently introduced geminal replacement models as linear combinations of non-orthogonal AGPs. This greatly simplifies the evaluation of matrix elements and permits us to introduce an AGP-based selective configuration interaction method, which can reach arbitrary excitation levels relative to a reference AGP, balancing accuracy and cost as we see fit.
View Article and Find Full Text PDFThe antisymmetrized geminal power (AGP) wave function has a long history and is known by different names in various chemical and physical problems. There has been recent interest in using AGP as a starting point for strongly correlated electrons. Here, we show that in a seniority-conserving regime, different AGP-based correlator representations based on generators of the algebra, killing operators, and geminal replacement operators are all equivalent.
View Article and Find Full Text PDF