Introduction: Maternal obstructive sleep apnea (OSA) during pregnancy is the risk factor for impaired fetal growth with low birth weight in the offspring. However, it is unclear whether gestational intermittent hypoxia (IH, a hallmark of maternal OSA) has long-term detrimental consequences on the skeletal development of offspring. This study aimed to investigate postnatal maxillofacial bone growth and cartilage metabolism in male and female offspring that were exposed to gestational IH.
View Article and Find Full Text PDFOrthodontic space closure following tooth extraction is often hindered by alveolar bone deficiency. This study investigates the therapeutic use of nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides loaded with polylactic-co-glycolic acid nanospheres (PLGA-NfDs) to mitigate alveolar bone loss during orthodontic tooth movement (OTM) following the bilateral extraction of maxillary first molars in a controlled experiment involving forty rats of OTM model with ethics approved. The decreased tendency of the OTM distance and inclination angle with increased bone volume and improved trabecular bone structure indicated minimized alveolar bone destruction.
View Article and Find Full Text PDFThe stromal cell-derived factor 1 (SDF-1)/chemokine receptor type 4 (CXCR4) axis plays a key role in alveolar bone metabolism during orthodontic tooth movement (OTM). Herein, the effects of the SDF-1/CXCR4 axis on the regional acceleratory phenomenon (RAP) in OTM velocity and on changes in the surrounding periodontium after adjacent tooth extraction in rats were investigated. Six-week-old male Wistar/ST rats underwent left maxillary first molar (M1) extraction and mesial OTM of the left maxillary second molar (M2) with a 10-g force closed-coil spring.
View Article and Find Full Text PDFIntroduction: Periostin, an extracellular matrix protein, plays an important role in osteogenesis and is also known to activate several signals that contribute to chondrogenesis. The absence of periostin in periostin knockout mice leads to several disorders such as craniosynostosis and periostitis. There are several splice variants with different roles in heart disease and myocardial infarction.
View Article and Find Full Text PDFResidual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which is recognized for regulating prototypical proinflammatory signals, physiological bone metabolism, pathologic bone destruction, and bone regeneration. The aim of this study was to investigate the therapeutic effect of NF-κB decoy ODNs on the extraction sockets of Wistar/ST rats when delivered by poly(lactic-co-glycolic acid) (PLGA) nanospheres.
View Article and Find Full Text PDFIntroduction: Chemokines play pivotal roles in orthodontic tooth movement (OTM) through osteoclast-mediated bone resorption, but the underlying mechanism remains unclear. We aimed to elucidate the effects of serial local vs systemic administration of the chemokine receptor CXCR4 antagonist AMD3100 on OTM.
Methods: The maxillary first molar (M1) of rats was moved mesially using a 10 g of force nickel-titanium coil spring.
Background: Excessive inflammation in the periodontal tissue after tooth replantation can lead to inflammatory root resorption and interrupt periodontal tissue regeneration. We tested the hypothesis that nuclear factor-κB decoy oligodeoxynucleotide-loaded poly lactic-co-glycolic acid nanospheres (NF-PLGA) inhibit excessive inflammation and promote healing of periodontal tissue after replantation in rats.
Methods: The upper right incisors of rats were extracted, immersed in different specific solutions, and replanted.
Activation of the sympathoadrenal system is associated with sleep apnea-related symptoms and metabolic dysfunction induced by chronic intermittent hypoxia (IH). IH can induce hormonal imbalances and growth retardation of the craniofacial bones. However, the relationship between IH and β2-adrenergic receptor signaling in the context of skeletal growth regulation is unclear.
View Article and Find Full Text PDFPurpose: Chronic intermittent hypoxia (IH) plays a pivotal role in the consequences of obstructive sleep apnea (OSA). It has been demonstrated that IH impairs nasomaxillary complex growth to reduce nasal airway cavity size in rodent models. Although turbinate dysfunction with inflammatory mucosal hypertrophy is related to OSA, the role of IH in turbinate hypertrophy with inflammation-driven fibrosis is unknown.
View Article and Find Full Text PDFObjectives: Chronic intermittent hypoxia (IH), a common state experienced in obstructive sleep apnoea (OSA), retards mandibular growth in adolescent rats. The aim of this study was to elucidate the differential effects of IH on mandibular growth in different growth stages.
Materials And Methods: Three-week-old (juvenile stage) and 7-week-old (adolescent stage) male Sprague-Dawley rats underwent IH for 3 weeks.
Objective: To evaluate the effect of sympathetic nervous system hyperactivity on craniofacial skeletal growth in growing spontaneously hypertensive rats (SHRs).
Design: Craniofacial skeletal growth was compared between male SHR and Wistar-Kyoto rats (WKR) using linear measurements on lateral and transverse cephalometric radiographs at the age of 12 weeks. Tibia length was measured as an index of whole body growth.
Facial asymmetry can be caused by unilateral condylar hyperplasia. In such cases, it may be difficult to achieve symmetry since there is dentoalveolar compensation on the affected side, and the occlusal cant does not correspond to the frontal mandibular deviation. In the case presented, surgical orthodontic treatment and orthognathic surgery planning was accomplished for a patient with facial asymmetry due to condylar hyperplasia.
View Article and Find Full Text PDFObjective: The aim of this study was to clarify the role of the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis in osteoclast accumulation, and the influence of orthodontic tooth movement (OTM) under mechanical force application to periodontal tissues, by administration of the CXCR4 antagonist AMD3100.
Design: The upper right first molar (M1) of rats was moved mesially with a 10-g force titanium-nickel closed coil spring. Rats were treated with phosphate-buffered saline or AMD3100 (5mg/kg), which is a SDF-1 antagonist.
Periodontitis is a chronic infectious disease for which the fundamental treatment is to reduce the load of subgingival pathogenic bacteria by debridement. However, previous investigators attempted to implement a nuclear factor kappa B (NF-κB) decoy oligodeoxynucleotide (ODN) as a suppressor of periodontitis progression. Although we recently reported the effectiveness of the ultrasound-microbubble method as a tool for transfecting the NF-κB decoy ODN into healthy rodent gingival tissue, this technique has not yet been applied to the pathological gingiva of periodontitis animal models.
View Article and Find Full Text PDFThe objective of this study is to investigate the effect of the ultrasound-microbubble technique in nuclear factor kappa B (NF-κB) decoy oligodeoxynucleotide (ODN) transfection in the gingival tissue in mice. The 6-FAM-labeled scrambled decoy ODN with microbubbles was applied to the periodontal tissue in 8-week-old male C57BL/6J mice by ultrasound radiation at low (LUM-Sc) and high (HUM-Sc) intensities to optimize the transfection condition of the ultrasound-microbubble method. Histological inspections were performed two hours after transfection to compare the expression with that in the sham-operated group without ultrasound radiation (A-Sc).
View Article and Find Full Text PDFAm J Orthod Dentofacial Orthop
February 2017
Introduction: In this study, we aimed to examine the role of intermittent hypoxia (IH) in dentofacial morphologic changes in growing rats.
Methods: Seven-week-old male rats were exposed to IH at 20 cycles per hour (nadir of 4% oxygen to peak of 21% oxygen) for 8 hours per day for 6 weeks. Control rats were exposed to normoxia (N).
Intermittent hypoxia (IH) recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA). Recently, we found that IH increased bone mineral density (BMD) in the inter-radicular alveolar bone (reflecting enhanced osteogenesis) in the mandibular first molar (M1) region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF) pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH.
View Article and Find Full Text PDFObjectives: To investigate intermittent hypoxia (IH) induced changes in craniofacial morphology and bone mineral density (BMD) in the mandible of growing rats.
Design: Seven-week-old male Sprague-Dawley rats were exposed to IH for 4 days or 3 weeks. Sham-operated rats simultaneously breathed room air.
Objective: To clarify the influences of intermittent hypoxia (IH) on the growth and development of the midfacial area, including the nasal cavity, in growing rats.
Design: Seven-week-old male Sprague-Dawley rats were divided into two groups: the experimental group (n=5), which was exposed to IH for 8h during light periods at a rate of 20 cycles/h (nadir, 4% O₂ to peak, 21% O₂ with 0% CO₂), and the control group (n=5), which was exposed to room air. After 3 weeks, the maxillofacial structures in both groups were evaluated with respect to the height, width, length, surface area, cross-sectional area, and volume of the nasal cavity using soft X-ray and micro-CT.
Objective: To examine changes in microvasculature and the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor 2 (VEGFR-2) in rat hypofunctional periodontal ligament (PDL) during experimental tooth movement.
Materials And Methods: Twelve-week-old male Sprague-Dawley rats were divided into normal occlusion and occlusal hypofunction groups. After a 2-week bite-raising period, rat first molar was moved mesially using a 10-gf titanium-nickel alloy closed coil spring in both groups.