Background: Biomarkers predicting clinical outcomes of treating non-small cell lung cancer (NSCLC) with combination of immune checkpoint inhibitors (ICIs) and chemotherapy would be valuable.
Objective: This study aims to seek predictors of combination of ICI/chemotherapy response in NSCLC patients using peripheral blood samples.
Methods: Patients diagnosed with advanced NSCLC between July 2019 and May 2021 receiving combination of ICI/chemotherapy were included and assessed for partial responses (PR), stable disease (SD) or progressive disease (PD).
Background: Several reports have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection tends to have more severe outcomes in cancer patients. Although vaccination reduces the risk of severe disease, data on antibody titers achieved by vaccination is scarce in cancer patients.
Methods: We collected 79 blood samples (69 lung cancer patients and 10 control individuals) and conducted an anti-SARS-CoV-2 antibody assay to compare the antibody titer achieved with current treatment.
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that acts on multiple cell lineages, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils and innate lymphoid cells, affecting their maturation, survival and recruitment. It is best known for its role in promoting type 2 immune responses such as in allergic diseases and, in 2021, a monoclonal antibody targeting TSLP was approved for the treatment of severe asthma. However, it is now clear that TSLP has many other important roles in a variety of settings.
View Article and Find Full Text PDFAlthough objective response rate and disease control rate are commonly used as primary endpoints of lung cancer trials, it remains unclear whether objective response rate and disease control rate correctly reflect the overall survival in a non-small cell lung cancer phase II trial evaluating a non-first-line chemotherapy. Objective response rate might be easily affected by chance because the small number of patients in each trial achieved complete or partial response in the phase II non-first-line setting. This study was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (UMIN000040412).
View Article and Find Full Text PDFAllergy Asthma Immunol Res
May 2021
Purpose: Guidelines and systematic reviews frequently warn of inhaled corticosteroid (ICS)-induced glaucoma. However, most of the published studies deny it.
Methods: We performed a systematic review of randomized, cohort, nested-case control, cross-sectional studies by using Meta-analyses of Observational Studies in Epidemiology statement.
Background: Although the US government approved hydroxychloroquine (HCQ) and chloroquine (CQ) for hospitalized coronavirus disease 19 (COVID-19) patients, some studies denied efficacy of HCQ and CQ. We aimed to evaluate HCQ/CQ treatment for COVID-19.
Methods: Five databases were searched on April 15, 2020, without publication date restriction.
Thymic stromal lymphopoietin (TSLP) is a cytokine that acts directly on CD4 T cells and dendritic cells to promote progression of asthma, atopic dermatitis, and allergic inflammation. However, a direct role for TSLP in CD8 T-cell primary responses remains controversial and its role in memory CD8 T cell responses to secondary viral infection is unknown. Here, we investigate the role of TSLP in both primary and recall responses in mice using two different viral systems.
View Article and Find Full Text PDFInterleukin (IL)-2 and IL-21 dichotomously shape CD8 T cell differentiation. IL-2 drives terminal differentiation, generating cells that are poorly effective against tumors, whereas IL-21 promotes stem cell memory T cells (T) and antitumor responses. Here we investigated the role of metabolic programming in the developmental differences induced by these cytokines.
View Article and Find Full Text PDFElucidation of how the differentiation of hematopoietic stem and progenitor cells (HSPCs) is reconfigured in response to the environment is critical for understanding the biology and disorder of hematopoiesis. Here we found that the transcription factors (TFs) Bach2 and Bach1 promoted erythropoiesis by regulating heme metabolism in committed erythroid cells to sustain erythroblast maturation and by reinforcing erythroid commitment at the erythro-myeloid bifurcation step. Bach TFs repressed expression of the gene encoding the transcription factor C/EBPβ, as well as that of its target genes encoding molecules important for myelopoiesis and inflammation; they achieved the latter by binding to their regulatory regions also bound by C/EBPβ.
View Article and Find Full Text PDFPulmonary alveolar proteinosis (PAP) is a severe respiratory disease characterized by dyspnea caused by accumulation of surfactant protein. Dysfunction of alveolar macrophages (AMs), which regulate the homeostasis of surfactant protein, leads to the development of PAP; for example, in mice lacking BTB and CNC homology 2 (Bach2). However, how Bach2 helps prevent PAP is unknown, and the cell-specific effects of Bach2 are undefined.
View Article and Find Full Text PDFHematopoietic stem cell and multipotent progenitor (MPP) commitment can be tuned in response to an infection so that their differentiation is biased toward myeloid cells. Here, we find that Bach2, which inhibits myeloid differentiation in common lymphoid progenitors, represses a cohort of myeloid genes and activates those linked to lymphoid function. Bach2 repressed both Cebpb and its target Csf1r, encoding C/EBPβ and macrophage colony-stimulating factor receptor (M-CSFr), respectively, whereas C/EBPβ repressed Bach2 and activated Csf1r.
View Article and Find Full Text PDFBach2 is a transcription factor which represses its target genes and plays important roles in the differentiation of B and T lymphoid cells. Bach2-deficient (KO) mice develop severe pulmonary alveolar proteinosis, which is associated with increased numbers of granulocytes and T cells. Bach2 is essential for the regulation of T cells, but its role in the regulation of granulocytes is not clear.
View Article and Find Full Text PDFPulmonary alveolar proteinosis (PAP) is a disease resulting from a dysfunction of the alveolar macrophages (AMs) where excess surfactant protein accumulates in the alveolar spaces. We previously reported that Bach2 KO mice developed PAP due to a defect in the handling of lipids by AMs. To investigate the functions of Bach1 and Bach2, which are regulated by oxidative stress, in the AMs and in lung homeostasis, we generated mice that lacked both Bach1 and Bach2 (Bach1/2 DKO mice).
View Article and Find Full Text PDFPulmonary alveolar proteinosis (PAP) results from a dysfunction of alveolar macrophages (AMs), chiefly due to disruptions in the signaling of granulocyte macrophage colony-stimulating factor (GM-CSF). We found that mice deficient for the B lymphoid transcription repressor BTB and CNC homology 2 (Bach2) developed PAP-like accumulation of surfactant proteins in the lungs. Bach2 was expressed in AMs, and Bach2-deficient AMs showed alterations in lipid handling in comparison with wild-type (WT) cells.
View Article and Find Full Text PDF