The cell (plasma) membrane is enriched with numerous receptors, ligands, enzymes, and phospholipids that play important roles in cell-cell and cell-extracellular matrix interactions governing, for instance, tissue development and repair. We previously showed that plasma membrane nanofragments (PMNFs) act as nucleation sites for bone formation in vivo, and induce in vitro mineralization within 1 day. In this study, we optimized the methods for generating, isolating, and applying PMNFs as a cell-free therapeutic to expedite bone defect repair.
View Article and Find Full Text PDFCommunication, especially conversation, is essential for human social life. Many previous studies have examined the neuroscientific underpinnings of conversation, i.e.
View Article and Find Full Text PDFControlling stem cell behavior at the material interface is crucial for the development of novel technologies in stem cell biology and regenerative medicine. The composition and presentation of bio-factors on a surface strongly influence the activity of stem cells. Herein, we designed an electroactive surface that mimics the initial process of trabecular bone formation, by immobilizing chondrocyte-derived plasma membrane nanofragments (PMNFs) on its surface for rapid mineralization within 2 days.
View Article and Find Full Text PDFThe objective of this study was to first identify the timing and location of early mineralization of mouse first molar, and subsequently, to characterize the nucleation site for mineral formation in dentin from a materials science viewpoint and evaluate the effect of environmental cues (pH) affecting early dentin formation. Early dentin mineralization in mouse first molars began in the buccal central cusp on post-natal day 0 (P0), and was first hypothesized to involve collagen fibers. However, elemental mapping indicated the co-localization of phospholipids with collagen fibers in the early mineralization area.
View Article and Find Full Text PDFMeckel's cartilage, a cartilage rod present in the mandible during developmental stages, shows a unique developmental fate: while the anterior and posterior portions undergo ossification, the middle part degenerates. Previously, it was shown that a stiff environment promoted cartilage degeneration in the middle region, while a soft environment enhanced the mineralization in the anterior region of Meckel's cartilage. This study aims to elucidate the spatio-temporal changes in the mechanosensing properties of Meckel's cartilage during its early developmental stages and clarify the mechanotransduction-related mechanisms involved in its degeneration.
View Article and Find Full Text PDF