Publications by authors named "Ripudaman K Bains"

Objective: CYP3A4 expression varies up to 100-fold among individuals, and, to date, genetic causes remain elusive. As a major drug-metabolizing enzyme, elucidation of such genetic causes would increase the potential for introducing personalized dose adjustment of therapies involving CYP3A4 drug substrates. The foetal CYP3A isoform, CYP3A7, is reported to be expressed in ∼10% of European adults and may thus contribute towards the metabolism of endogenous substances and CYP3A drug substrates.

View Article and Find Full Text PDF

Ripudaman K Bains is the editor of the Genome Biology special issue content on the 'genomics of infectious diseases', and introduces the collection in this editorial.

View Article and Find Full Text PDF

The genomics revolution has provided a plethora of data from many previously uncharacterized populations. The increase in the amount of genetic data has improved our understanding of why individuals and populations differ in their susceptibility to multiple diseases. It has also enabled researchers to identify how genomic variation, including at the Cytochrome P450 (CYP450) super-family, affects the safety and efficacy of therapeutic drugs.

View Article and Find Full Text PDF

Background: Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles).

View Article and Find Full Text PDF