(1) Background: Recent publications foster stereotactic body radiotherapy (SBRT) in patients with adrenal oligometastases or oligoprogression. However, local control (LC) after non-adaptive SBRT shows the potential for improvement. Online adaptive MR-guided SBRT (MRgSBRT) improves tumor coverage and organ-at-risk (OAR) sparing.
View Article and Find Full Text PDFIntroduction: Magnetic resonance guided radiotherapy (MRgRT) allows daily adaptation of treatment plans to compensate for positional changes of target volumes and organs at risk (OARs). However, current adaptation times are relatively long and organ movement occurring during the adaptation process might offset the benefit gained by adaptation. The aim of this study was to evaluate the dosimetric impact of these intrafractional changes.
View Article and Find Full Text PDFBackground And Purpose: Ultra-hypofractionated online adaptive magnetic resonance-guided radiotherapy (MRgRT) is promising for prostate cancer. However, the impact of online adaptation on target coverage and organ-at-risk (OAR) sparing at the level of accumulated dose has not yet been reported. Using deformable image registration (DIR)-based accumulation, we compared the delivered adapted dose with the simulated non-adapted dose.
View Article and Find Full Text PDFBackground: Apart from superior soft tissue contrast, MR-guided stereotactic body radiation therapy (SBRT) offers the chance for daily online plan adaptation. This study reports on the comparison of dose parameters before and after online plan adaptation in MR-guided SBRT of localized prostate cancer.
Materials And Methods: 32 consecutive patients treated with ultrahypofractionated SBRT for localized prostate cancer within the prospective SMILE trial underwent a planning process for MR-guided radiotherapy with 37.
Introduction: Patient specific quality assurance (QA) in MR-Linacs can be performed with MR-compatible ion chamber arrays. However, the presence of a static magnetic field can alter the angular response of such arrays substantially. This works investigates the suitability of two ion chamber arrays, an air-filled and a liquid-filled array, for patient specific QA at a 0.
View Article and Find Full Text PDFBackground And Purpose: In online adaptive stereotactic body radiotherapy treatments, linear accelerator delivery accuracy is essential. Recently introduced double stack multileaf collimators (MLCs) have new facets in their calibration. We established a radiation-based leaf-individual calibration (LIMCA) method for double stack MLCs.
View Article and Find Full Text PDFThe combination of magnetic resonance (MR) imaging and linear accelerators (linacs) into MR-Linacs enables continuous MR imaging and advanced gated treatments of patients. Previously, a dose-rate transient (∼8% reduced dose rate during the initial 0.5 s of each beam) was identified for a Viewray MRIdian MR-Linac (Klavsen2022106759).
View Article and Find Full Text PDF(1) Background: Magnetic-resonance (MR)-guided stereotactic body radiotherapy (SBRT) allows for ablative, non-invasive treatment of liver metastases. However, long-term clinical outcome data are missing. (2) Methods: Patients received MR-guided SBRT with a MRIdian Linac between January 2019 and October 2021 and were part of an ongoing prospective observational registry.
View Article and Find Full Text PDFBackground: Stereotactic radiotherapy of ultracentral lung tumors (ULT) is challenging as it may cause overdoses to sensitive mediastinal organs with severe complications. We aimed to describe long-term outcomes after stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) as an innovative treatment of ULT.
Patients & Methods: We analyzed 36 patients that received SMART to 40 tumors between 02/2020 - 08/2021 inside prospective databases.
Purpose/objective: To evaluate the potential of stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) to fulfill dose recommendations for stereotactic body radiotherapy (SBRT) of adrenal metastases and spare organs at risk (OAR).
Materials And Methods: In this subgroup analysis of a prospective registry trial, 22 patients with adrenal metastases were treated on a 0.35 T MR-Linac in 5-12 fractions with fraction doses of 4-10 Gy.
Purpose: Dose calculation for MR-guided radiotherapy (MRgRT) at the 0.35 T MR-Linac is currently based on deformation of planning CTs (defCT) acquired for each patient. We present a simple and robust bulk density overwrite synthetic CT (sCT) method for abdominal treatments in order to streamline clinical workflows.
View Article and Find Full Text PDF(1) Background: To assess dosimetry benefits of stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) of liver metastases. (2) Methods: This is a subgroup analysis of an ongoing prospective registry including patients with liver metastases. Patients were treated at the MRIdian Linac between February 2020 and April 2022.
View Article and Find Full Text PDFBackground: Stereotactic Body Radiotherapy (SBRT) is a standard treatment for inoperable primary and secondary lung tumors. In case of ultracentral tumor location, defined as tumor contact with vulnerable mediastinal structures such as the proximal bronchial tree (PBT) or esophagus, SBRT is associated with an increased risk for severe complications. Magnetic resonance (MR)-guided SBRT can mitigate this risk based on gated dose delivery and daily plan adaptation.
View Article and Find Full Text PDFBackground: Stereotactic body radiotherapy (SBRT) is an established local treatment method for patients with hepatic oligometastasis or oligoprogression. Liver metastases often occur in close proximity to radiosensitive organs at risk (OARs). This limits the possibility to apply sufficiently high doses needed for optimal local control.
View Article and Find Full Text PDFPurpose: To demonstrate dosimetry benefits and report clinical outcomes of stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) of abdominopelvic lymphatic oligometastases.
Patients & Methods: Prospective registry data of 26 patients with 31 oligoprogressive lymphatic metastases (1-2 lesions) who received SMART between April 2020 and April 2021 was analyzed. Prostate cancer was the most common histology (69%).
Purpose: To explore the benefit of adaptive magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) for treatment of lung tumors in different locations with a focus on ultracentral lung tumors (ULT).
Patients & Methods: A prospective cohort of 21 patients with 23 primary and secondary lung tumors was analyzed. Tumors were located peripherally (N = 10), centrally (N = 2) and ultracentrally (N = 11, planning target volume (PTV) overlap with proximal bronchi, esophagus and/or pulmonary artery).
Online adaption of treatment plans on a magnetic resonance (MR)-Linac enables the daily creation of new (adapted) treatment plans using current anatomical information of the patient as seen on MR images. Plan quality assurance (QA) relies on a secondary dose calculation (SDC) that is required because a pretreatment measurement is impossible during the adaptive workflow. However, failure mode and effect analysis of the adaptive planning process shows a large number of error sources, and not all of them are covered by SDC.
View Article and Find Full Text PDFIn MR-guided radiotherapy (MRgRT) for prostate cancer treatments inter-fractional anatomy changes such as bladder and rectum fillings may be corrected by an online adaption of the treatment plan. To clinically implement such complex treatment procedures, however, specific end-to-end tests are required that are able to validate the overall accuracy of all treatment steps from pre-treatment imaging to dose delivery.In this study, an end-to-end test of a fractionated and online adapted MRgRT prostate irradiation was performed using the so-called ADAM-PETer phantom.
View Article and Find Full Text PDFObjective: Stereotactic body radiotherapy (SBRT) is a noninvasive treatment option for lymph node metastases (LNM). Magnetic resonance (MR)-guidance offers superior tissue contrast and enables treatment of targets in close vicinity to radiosensitive organs at risk (OAR). However, literature on MR-guided SBRT of LNM is scarce with no report on outcome parameters.
View Article and Find Full Text PDFPurpose/objective: Stereotactic body radiation therapy (SBRT) has emerged as a valid treatment alternative for non-resectable liver metastases or hepatocellular carcinomas (HCC). Magnetic resonance (MR) guided SBRT has a high potential of further improving treatment quality, allowing for higher, tumoricidal irradiation doses whilst simultaneously sparing organs at risk. However, data on treatment outcome and patient acceptance is still limited.
View Article and Find Full Text PDFIntroduction: Hybrid magnetic resonance (MR) linear accelerators (MR-Linacs) for radiotherapy allow for the visualization and tracking of moving target volumes during the entire treatment. This makes gated treatments possible, decreasing the irradiated volumes and thus sparing healthy tissue from unnecessary radiation dose. Conventionally, tumors that are subject to respiration motion are treated by irradiating the entire area of potential target presence (internal target volume, ITV).
View Article and Find Full Text PDFClinical Issue: Image-guided radiotherapy (IGRT) using X‑rays and cone-beam computed tomography (CT) has fostered precision radiotherapy. However, inter- and intrafractional variations of target volume position and organs at risk still limit target volume dose and sparing of radiosensitive organs at risk.
Methodological Innovations: Hybrid machines directly combining linear accelerators and magnetic resonance (MR) imaging allow for live imaging during radiotherapy.