Publications by authors named "Rippe M"

Objective: The aim of the present study was to evaluate the influence of multidirectional brushing on the surface roughness, morphology, and bonding interface of resin-repaired CAD-CAM ceramic and composite restorations.

Materials And Methods: Twelve (N = 12) blocks (4 mm × 4 mm × 2 mm for parallel axis; 5 mm × 4 mm × 2 mm for perpendicular axis) of lithium disilicate glass-ceramic (IPS e.max CAD, Ivoclar AG) and CAD-CAM resin composite (Tetric CAD, Ivoclar AG) were obtained and repaired with direct resin composite (Clearfil AP-X, Kuraray).

View Article and Find Full Text PDF

Despite the advancements in indirect monolithic restorations, technical complications may occur during function. To overcome this issues, intraoral repair using resin composite is a practical and low-cost procedure, being able to increase the restoration's longevity. This review aimed to evaluate the need for repair and suggest a standardized repair protocol to the main indirect restorative materials.

View Article and Find Full Text PDF

Objective: The study aims to evaluate the shear bond and flexural strength fatigue behavior of yttrium-stabilized zirconia (4YSZ) repaired using different resin composites.

Materials And Methods: Cylindric specimens of 4YSZ were obtained for the bond strength (Ø = 6 mm, 1.5 mm of thickness) and biaxial flexural strength (Ø = 15 mm, 1 mm of thickness) fatigue tests and divided into 3 groups according to the repair resin composite: EVO (nanohybrid), BULK (bulk-fill), and FLOW (flowable).

View Article and Find Full Text PDF

Objective: To evaluate the effect of different surface treatments on the morphology, shear bond, and flexural fatigue strength of a repaired translucent zirconia.

Methods: Monolithic disc-shaped specimens of translucent zirconia were prepared and ground to simulate repair areas. Four groups underwent different treatments: Air-MDP (air-abrasion with alumina particles and 10-MDP primer), -Sil (silica-coated alumina particles with MDP-containing silane), -MDP (silica coating with 10-MDP primer), and Uni adhe (universal adhesive).

View Article and Find Full Text PDF

The aim of this study was to mechanically characterize through flexural fatigue test two CAD-CAM glass-ceramics according to distinct surface etching protocols. To do so, feldspathic (FELD) and lithium disilicate (LD) glass ceramics were subjected to different surface treatments: (1) control - no treatment (Ctrl); (2) conventional protocol etching with 5% hydrofluoric acid followed by silane coupling agent application (HF + SIL; Monobond N, Ivoclar); or (3) using a self-etching ceramic primer (E&P; Monobond Etch & Prime, Ivoclar). Ceramic discs (N = 120; Ø = 12 mm; thickness = 1.

View Article and Find Full Text PDF

This study aimed to compare the fatigue performance of a lithium disilicate ceramic cemented on different substrates (human dentin and glass fiber-reinforced epoxy resin - GFRER), treated with different types of conditioning (CTR - without surface conditioning; HF5 - 5% hydrofluoric acid; HF10 - 10% hydrofluoric acid; H3PO4 - phosphoric acid 37%; SAND - sandblasting with aluminum oxide). The occlusal surface of human molars (DENT group) (n = 15) was ground for dentin exposure and the root portion was cut, then the dentin slice (2.0 mm thick) was conditioned with 37% phosphoric acid and a dual-curing dental adhesive was applied.

View Article and Find Full Text PDF

This study evaluated the mechanical behavior and risk of failure of three CAD-CAM crowns repaired with different resin composites through a three-dimensional (3D) finite element analysis. Three-dimensional models of different cusp-repaired (conventional nanohybrid, bulk-fill, and flowable resin composites) crowns made of zirconia, lithium disilicate, and CAD-CAM resin composite were designed, fixed at the cervical level, and loaded in 100 N at the working cusps, including the repaired one. The models were analyzed to determine the Maximum Principal and Maximum Shear stresses (MPa).

View Article and Find Full Text PDF

This study aimed to evaluate the effect of low and high viscosities of dual-cured resin cement on the mechanical fatigue behavior of yttria tetragonal zirconia polycrystals (3Y-TZP) and yttria-stabilized zirconia (4YSZ) adhesively luted to a dentin analogue (glass fiber-reinforced epoxy resin). Ceramic discs were randomly divided into four groups (n = 20) based on the following study factors: dual-cured resin cement viscosities (low and high) and zirconia microstructure (3Y-TZP and 4YSZ). The discs were treated by air abrasion with aluminum oxide particles (50 μm), followed by the application of primer, and then luted with high or low viscosity resin cement to the dentin analogue.

View Article and Find Full Text PDF

The purpose of the present study was to characterize the elastic modulus and Poisson's ratio of a resin cement with distinct viscosities, and to evaluate their impact on the static and fatigue strength of a translucent zirconia (4Y-PSZ) after air-abrasion surface treatment. Bar-shaped specimens of two different viscosities of resin cement (high and low) were obtained (25 × 10 × 3 mm). Sonelastic and Maxwell principles tests were performed to determine the elastic modulus and Poisson's ratio of each resin cement.

View Article and Find Full Text PDF

Statement Of Problem: Information regarding the masking ability of ceramic crowns over different implant abutment materials is scarce.

Purpose: The purpose of this in vitro study was to evaluate the masking ability of different monolithic or bilayer ceramic materials with different thicknesses over substrates indicated for implant restorations by using opaque and translucent evaluation pastes.

Material And Methods: Disk-shaped specimens, shade A1 (VITA Classic; Ø10×1.

View Article and Find Full Text PDF

This study investigated the fatigue failure load of simplified monolithic yttria partially stabilized zirconia polycrystal restorations cemented to a dentin-like substrate using different luting systems. Disc-shaped ceramic (Zenostar T, 10 mm Ø × 0.7 mm thick) and dentin-like substrate (10 mm Ø × 2.

View Article and Find Full Text PDF

The aim of this study was to evaluate the topography and the fatigue performance of lithium disilicate glass-ceramic after surface grinding through different laboratory protocols used to simulate the Computer-aided design/Computer-aided manufacturing (CAD/CAM) milling. Ceramic discs (IPS e.max CAD, Ø = 13.

View Article and Find Full Text PDF

Objective: This study had the objective to test the effect of ceramic surface treatments on the microshear bond strength (μSBS) of different resin cements to a zirconia-reinforced lithium silicate (ZLS).

Methods And Materials: ZLS blocks were sectioned, embedded in acrylic resin, and then allocated into nine groups considering two study factors: "ceramic surface treatment" (HF - hydrofluoric acid; EP - self-etching primer; TBS - tribochemical silica coating) and "resin cements" (nMDP - without MDP monomer; MDP - with MDP monomer; SA - self-adhesive). Starch tubes (n=36) were placed on the treated ceramic surface and the cement was applied.

View Article and Find Full Text PDF

Purpose: To identify and discuss the available surface treatments and adhesives for polyetheretherketone (PEEK) to increase its bond strength to resin-based materials used in dentistry.

Materials And Methods: The reporting of this scoping review was based on PRISMA. The study protocol was made available at: https://osf.

View Article and Find Full Text PDF

Purpose: This systematic review aims to explore and compile the effect of adhesive luting on the mechanical properties of dental ceramics used as restorative materials.

Materials And Methods: The PubMed/MEDLINE, Web of Science and Scopus databases were searched on January 31st, 2021 to select laboratory studies written in English, without publishing-date restrictions, which compared the mechanical properties of commercially available dental ceramics as restorative materials luted using adhesive vs non-adhesive strategies. A total of 20 (out of 2039) studies were eligible and included in the analysis.

View Article and Find Full Text PDF

This study aimed to investigate the effect of surface roughness (polished vs. CAD/CAM milling simulation) on impact strength of five dental ceramics for manufacturing CAD/CAM monolithic restorations. Specimens of five ceramics (FC- feldspathic glass-ceramic; PICN- polymer-infiltrated ceramic-network; ZLS- zirconia-reinforced lithium silicate glass-ceramic; LD- lithium disilicate glass-ceramic; YZ- yttria-stabilized tetragonal zirconia polycrystal ceramic) to be tested under impact (15×10×2mm3; n= 15) were divided into two groups, according to surface treatment: polishing (pol) and grinding (gri) as CAD/CAM milling simulation.

View Article and Find Full Text PDF

The fatigue behavior and FEA analysis of different ceramic materials cemented over distinct substrates for implant-supported crowns were evaluated in this study. Discs of 10 mm in diameter of both restorative and substrate materials were made and randomly allocated into pairs (n = 15) considering the two study factors: 'restorative ceramic material' (1 mm thickness) - polymer-infiltrated ceramic network (PICN), lithium disilicate (LD), zirconia-reinforced lithium silicate (ZLS), or translucent zirconia (TZ); and 'foundation substrate' (2 mm thickness) - polyetheretherketone (Peek) or yttrium-stabilized zirconia (YZ). Adhesive cementation was made with a dual cure resin cement.

View Article and Find Full Text PDF

Objective: This study assessed the effect of conditioning of the intaglio surface and resin cements on the fatigue behavior of zirconia-reinforced lithium silicate ceramic (ZLS) restorations cemented to a dentin analogue.

Methods: ZLS ceramic (Ø=10 mm, thickness=1.5 mm) and dentin analogue (Ø=10 mm, thickness=2.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effect of in-lab simulation procedures performed on a lithium disilicate ceramic luted to a dentin-analogue material regarding the fatigue performance and topographic changes. Lithium disilicate ceramic (IPS e.max CAD) discs (Ø = 13.

View Article and Find Full Text PDF

This study evaluated the effect of distinct surface treatments on the fatigue behavior (biaxial flexural fatigue testing) and surface characteristics (topography and roughness) of a 5% mol yttria partially stabilized zirconia ceramic (5Y-PSZ). Disc-shaped specimens of 5Y-PSZ (IPS e.max ZirCAD MT Multi) were manufactured (ISO 6872-2015) and allocated into six groups (n = 15) considering the following surface treatments: Ctrl - no-treatment; GLZ - low-fusing porcelain glaze application; SNF - 5 nm SiO nanofilm; AlOx - aluminum oxide particle air-abrasion; SiC - silica-coated aluminum oxide particles (silica-coating); and 7%Si - 7% silica-coated aluminum oxide particles (silica-coating).

View Article and Find Full Text PDF

Purpose: To evaluate the effect of different etching times of a self-etching ceramic primer on the microshear bond strength (µSBS) and topographic surface pattern of a lithium-disilicate glass-ceramic.

Materials And Methods: Ceramic slices were subjected to an in-lab simulation of CAD/CAM milling and randomly allocated to 10 groups (n = 35) considering two factors: "surface treatment" in 5 levels - one control group (5% hydrofluoric acid + silane application [HF5+SIL]), and 4 experimental groups using ceramic etching/primer (Monobond Etch & Prime, E&P) with different passive application times (40 s, 2 min, 5 min, or 10 min); and "aging" factor in 2 levels - short-term (after 24 h), or long-term (storage for 180 days + 12,000 thermal cycles). Composite cement cylinders were built and µSBS tests were run in a universal testing machine.

View Article and Find Full Text PDF

Purpose: This study evaluated the influence of different surface treatments of zirconia used to enhance bonding with veneering porcelain, and thermocycling on the resistance to porcelain cracking and delamination during fatigue test.

Methods: Bilayer ceramic discs were made from zirconia blocks (IPS e.max Zircad MO, Ivoclar Vivadent - 0.

View Article and Find Full Text PDF

Purpose: To evaluate the influence of quantity and positioning of veneered zirconia specimens during firing of porcelain on their fatigue performance and colorimetric differences.

Methods: Bilayer discs (Ø=15 mm) were made, following ISO 6872 guidelines, using a Y-TZP core (yttria-stabilized tetragonal zirconia polycrystal ceramic; VITA In-Ceram YZ) and a feldspathic veneering material (VITA VM9), being both layers with 0.7 mm thickness.

View Article and Find Full Text PDF

This study evaluated the distinct conditioning effect of the intaglio surface of bonded fully-stabilized zirconia (FSZ) simplified restorations on the mechanical fatigue behavior of the set prior to and after aging. Ceramic disc shaped specimens (Ø= 10 mm and 1 mm thick) were randomly allocated into 14 groups considering: "surface treatments" (Ctrl: no-treatment; PM: universal primer; GLZ: low-fusing porcelain glaze; SNF: 5 nm SiO nanofilm deposition; AlOx: air-abrasion with aluminum oxide; SiC: air-abrasion with silica-coated aluminum oxide; 7%Si: air-abrasion with 7% silica-coated aluminum oxide); and "aging" (baseline: 24 h at 37 °C in water; or aged: 90 days at 37 °C in water + 12,000 thermal cycles). The discs were treated, luted with resin cement onto the dentin analog, subjected to aging or not, and then tested under a step-stress fatigue test at 20 Hz, 10,000 cycles/step, step-size of 100N starting at 200N, and proceeding until failure detection.

View Article and Find Full Text PDF

Purpose: To evaluate the influence of new air-abrasion powders with different silica concentrations (silica-coated aluminum oxide) and aging on the bond strength between composite cement and Y-TZP ceramic.

Materials And Methods: Ceramic slices (7 x 6.3 x 2 mm3) were randomly allocated into 8 groups (n = 20) considering different surface treatments (SiC: silica-coated aluminum oxide particles; AlOx: aluminum oxide particles; 7% Si and 20% Si: experimental powders consisting of 7% and 20% silica-coated of AlOx respectively) and aging (baseline: 24 h at 37°C in water; aged: 90 days at 37°C in water + 12,000 thermal cycles).

View Article and Find Full Text PDF