Understanding the neural system in the brain requires the detection of signals from the tissue. Microscale electrodes enable high spatiotemporal neural recording, whereas traditional microelectrodes cause material and geometry mismatches between the electrode and the tissue, leading to injury and signal loss during recording. In this study, we propose a fabrication technique that uses magnetic force to facilitate assembly of vertical microscale wire-electrodes on a flexible substrate.
View Article and Find Full Text PDFDiabetes is known to cause a variety of complications, having a high correlation with Alzheimer's disease. Electrophysiological recording using a microscale needle electrode is a promising technology for the study, however, diabetic brain tissue is more difficult to record neuronal activities than normal tissue due to these complications including the development of cerebrovascular disease. Here we show an electrophysiological methodology for diabetic db/db mice (+Lepr/+Lepr) using a 4-μm-tip diameter needle-electrode device.
View Article and Find Full Text PDF