Publications by authors named "Rio P Juni"

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis.

View Article and Find Full Text PDF

Aging increases the risk of age-related diseases, imposing substantial healthcare and personal costs. Targeting fundamental aging mechanisms pharmacologically can promote healthy aging and reduce this disease susceptibility. In this work, we employed transcriptome-based drug screening to identify compounds emulating transcriptional signatures of long-lived genetic interventions.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases.

View Article and Find Full Text PDF

While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs.

View Article and Find Full Text PDF

Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding.

View Article and Find Full Text PDF

The advancement of medical technology has led not only to an increase in life expectancy but also to a rise in aging-related diseases. Aging promotes metabolic disorders, in turn affecting cardiovascular health. Derailment of biological processes in the pancreas, liver, adipose tissue, and skeletal muscle impairs glucose and lipid metabolism, and mitochondrial function, triggering the development of diabetes and lipid-related disorders that inflict damage on cardiac and vascular tissues.

View Article and Find Full Text PDF

As mediators of intercellular communication, extracellular vesicles containing molecular cargo, such as microRNAs, are secreted by cells and taken up by recipient cells to influence their cellular phenotype and function. Here we report that cardiac stress-induced differential microRNA content, with miR-200c-3p being one of the most enriched, in cardiomyocyte-derived extracellular vesicles mediates functional cross-talk with endothelial cells. Silencing of miR-200c-3p in mice subjected to chronic increased cardiac pressure overload resulted in attenuated hypertrophy, smaller fibrotic areas, higher capillary density, and preserved cardiac ejection fraction.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) promotes development of cardiac abnormalities and is highly prevalent in patients with heart failure, particularly in those with preserved ejection fraction. CKD is associated with endothelial dysfunction, however, whether CKD can induce impairment of endothelium-to-cardiomyocyte crosstalk leading to impairment of cardiomyocyte function is not known. The sodium-glucose co-transporter 2 inhibitor, empagliflozin, reduced cardiovascular events in diabetic patients with or without CKD, suggesting its potential as a new treatment for heart failure with preserved ejection fraction.

View Article and Find Full Text PDF

The positive findings of the EMPA-REG OUTCOME trial (Randomized, Placebo-Controlled Cardiovascular Outcome Trial of Empagliflozin) on heart failure (HF) outcome in patients with type 2 diabetes mellitus suggest a direct effect of empagliflozin on the heart. These patients frequently have HF with preserved ejection fraction (HFpEF), in which a metabolic risk-related pro-inflammatory state induces cardiac microvascular endothelial cell (CMEC) dysfunction with subsequent cardiomyocyte (CM) contractility impairment. This study showed that CMECs confer a direct positive effect on contraction and relaxation of CMs, an effect that requires nitric oxide, is diminished after CMEC stimulation with tumor necrosis factor-α, and is restored by empagliflozin.

View Article and Find Full Text PDF

Background/aims: Heart failure is characterized by chronic low-grade vascular inflammation, which in itself can lead to endothelial dysfunction. Clinical trials showed reductions in heart failure-related hospitalizations of type 2 diabetic patients using sodium glucose co-transporter 2 inhibitors (SGLT2i's). Whether and how SGLT2i's directly affect the endothelium under inflammatory conditions is not completely understood.

View Article and Find Full Text PDF

Cardiovascular diseases account for ~50% of mortality in patients with chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is independently associated with endothelial dysfunction and cardiovascular mortality. We hypothesized that CKD impairs microvascular endothelial function and that this can be attributed to FGF23.

View Article and Find Full Text PDF

Heart failure is a complex syndrome involving various pathophysiological processes. An increasing body of evidence shows that the myocardial microvasculature is essential for the homeostasis state and that a decompensated heart is associated with microvascular dysfunction as a result of impaired endothelial angiogenic capacity. The intercellular communication between endothelial cells and cardiomyocytes through various signaling molecules, such as vascular endothelial growth factor, nitric oxide, and non-coding RNAs is an important determinant of cardiac microvascular function.

View Article and Find Full Text PDF

Nitric oxide (NO) produced by endothelial NO synthase (eNOS) exerts beneficial effects in a variety of cardiovascular disease states. Studies on the benefit of eNOS activity in pressure-overload cardiac hypertrophy and dysfunction produced by aortic stenosis are equivocal, which may be due to different expression levels of eNOS or different severities of pressure-overload. Consequently, we investigated the effects of eNOS-expression level on cardiac hypertrophy and dysfunction produced by mild or severe pressure-overload.

View Article and Find Full Text PDF

Oxidative stress greatly influences the pathogenesis of various cardiovascular disorders. Coronary interventions, including balloon angioplasty and coronary stent implantation, are associated with increased vascular levels of reactive oxygen species in conjunction with altered endothelial cell and smooth muscle cell function. These alterations potentially lead to restenosis, thrombosis, or endothelial dysfunction in the treated artery.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are essential in vascular homeostasis but may contribute to vascular dysfunction when excessively produced. Superoxide anion (O(2)(·-)) can directly affect vascular tone by reacting with K(+) channels and indirectly by reacting with nitric oxide (NO), thereby scavenging NO and causing nitroso-redox imbalance. After myocardial infarction (MI), oxidative stress increases, favoring the imbalance and resulting in coronary vasoconstriction.

View Article and Find Full Text PDF

Endothelial nitric oxide synthase (eNOS) serves as a critical enzyme in maintaining vascular pressure by producing nitric oxide (NO); hence, it has a crucial role in the regulation of endothelial function. The bioavailability of eNOS-derived NO is crucial for this function and might be affected at multiple levels. Uncoupling of eNOS, with subsequently less NO and more superoxide generation, is one of the major underlying causes of endothelial dysfunction found in atherosclerosis, diabetes, hypertension, cigarette smoking, hyperhomocysteinemia, and ischemia/reperfusion injury.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0fsi4d4mit1h5upls26qstpdc1cgu29j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once