Publications by authors named "Rio Barrere-Cain"

Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data.

View Article and Find Full Text PDF
Article Synopsis
  • Caenorhabditis elegans serves as an important model for studying how different organs and cells react to external influences, due to its unique tissue structures.
  • The study introduces a new single-nucleus RNA sequencing (snRNA-seq) method that addresses challenges faced with single-cell RNA sequencing in this organism.
  • The paper provides a detailed protocol for isolating the nuclei of C. elegans, particularly focusing on analyzing gene expression changes following alcohol exposure, with additional information found in the referenced study by Truong et al. (2023).
View Article and Find Full Text PDF

Early life microbe-immune interactions at barrier surfaces have lasting impacts on the trajectory towards health versus disease. Monocytes, macrophages and dendritic cells are primary sentinels in barrier tissues, yet the salient contributions of commensal-myeloid crosstalk during tissue development remain poorly understood. Here, we identify that commensal microbes facilitate accumulation of a population of monocytes in neonatal skin.

View Article and Find Full Text PDF

Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data.

View Article and Find Full Text PDF

Single-cell transcriptomic platforms provide an opportunity to map an organism's response to environmental cues with high resolution. Here, we applied single-nucleus RNA sequencing (snRNA-seq) to establish the tissue and cell type-resolved transcriptome of the adult C. elegans and characterize the inter- and trans-generational transcriptional impact of ethanol.

View Article and Find Full Text PDF

Introduction: Physician-scientist training programs expect applicants to have had extensive research experience prior to applying. Even at the best of times, this leaves individuals from underserved and underrepresented backgrounds at a competitive disadvantage, especially those remote from major academic centers. The COVID-19 pandemic exacerbated that disadvantage by closing research laboratories and suspending summer research opportunities.

View Article and Find Full Text PDF

Civic health refers to the ability of a community to organize and collectively address problems that affect the well-being of its members through democratic participation. Civic health should be an integral part of the medical school curriculum because improving a community's civic health shifts the distribution of power toward patients, better enabling them to address social determinants of health that are affecting their well-being. This article details how to effectively integrate civic health curriculum into already-existing medical education frameworks, outlines how these interventions will improve both patient care and the student experience, and addresses barriers that might restrict the implementation.

View Article and Find Full Text PDF

We live in a complex chemical environment where there are an estimated 350 000 chemical compounds or mixtures commercially produced. A strong body of literature shows that there are time points during early development when an organism's epigenome is particularly sensitive to chemicals in its environment. What is less understood is how gene-environment and epigenetic-environment interactions change with age.

View Article and Find Full Text PDF

Background: Non-alcoholic fatty liver disease (NAFLD) encompasses benign steatosis and more severe conditions such as non-alcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. This chronic liver disease has a poorly understood etiology and demonstrates sexual dimorphisms. We aim to examine the molecular mechanisms underlying sexual dimorphisms in NAFLD pathogenesis through a comprehensive multi-omics study.

View Article and Find Full Text PDF

The etiology of non-alcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, is poorly understood. To understand the causal mechanisms underlying NAFLD, we conducted a multi-omics, multi-tissue integrative study using the Hybrid Mouse Diversity Panel, consisting of ∼100 strains of mice with various degrees of NAFLD. We identified both tissue-specific biological processes and processes that were shared between adipose and liver tissues.

View Article and Find Full Text PDF

Elucidating the mechanisms of complex diseases such as cardiovascular disease (CVD) remains a significant challenge due to multidimensional alterations at molecular, cellular, tissue, and organ levels. To better understand CVD and offer insights into the underlying mechanisms and potential therapeutic strategies, data from multiple omics types (genomics, epigenomics, transcriptomics, metabolomics, proteomics, microbiomics) from both humans and model organisms have become available. However, individual omics data types capture only a fraction of the molecular mechanisms.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) has become an increasingly challenging health burden due to its high morbidity, mortality, and heightened prevalence worldwide. Although dietary and nutritional imbalances have long been recognized as key risk factors for T2D, the underlying mechanisms remain unclear. The advent of nutritional systems biology, a field that aims to elucidate the interactions between dietary nutrients and endogenous molecular entities in disease-related tissues, offers unique opportunities to unravel the complex mechanisms underlying the health-modifying capacities of nutritional molecules.

View Article and Find Full Text PDF