Repetitive transcranial magnetic stimulation (rTMS) is now widely used as a means of neuromodulation, but the details of the mechanisms by which rTMS works remain unclarified. As a step forward to unveiling the neural phenomena occurring underneath the TMS coil, we conducted an electrophysiological study using awake and unanesthetized monkeys with subdural electrocorticogram (ECoG) electrodes implanted over the primary motor cortex (MI). We evaluated the effects of low-frequency (1 Hz) and high-frequency (10 Hz) rTMS on the resting-state ECoG signals in the stimulated MI, as well as the motor evoked potentials (MEPs) in the contralateral hand.
View Article and Find Full Text PDFLayer V of the entorhinal cortex (EC) receives input from the hippocampus and originates main entorhinal outputs. The deep-sublayer Vb, immunopositive for the transcription factor Ctip2, is thought to be the main recipient of hippocampal projections, whereas the superficial-sublayer LVa, immunonegative for Ctip2, originates the main outputs of EC. This disrupts the proposed role of EC as mediating hippocampal-cortical interactions.
View Article and Find Full Text PDF