Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms.
View Article and Find Full Text PDFAims: The present investigation was carried out to isolate, screen and characterize potential sulfur-oxidizing bacteria (SOB) isolated from mustard field's soil.
Methods And Results: A total of 130 bacteria were isolated and after screening five maximum sulfate-producing isolates were optimized for culture conditions. The incubation time of 48 h was found optimum for all bacterial isolates and 30°C was the best temperature for the growth of SSD11, SSR1 and SSG8 whereas 35°C for SSF17.