Publications by authors named "Rinke K"

The use of high-frequency water quality monitoring has increased over several decades. This has mostly been motivated by curiosity-driven research and has significantly improved our understanding of hydrochemical processes. Despite these scientific successes and the growth in sensor technology, the large-scale uptake of high-frequency water quality monitoring by water managers is hampered by a lack of comprehensive practical guidelines.

View Article and Find Full Text PDF

Assessing nutrient loading and processing is crucial for water quality management in lakes and reservoirs. Quantifying and reducing external nutrient inputs in these systems remains a significant challenge. The difficulty arises from low monitoring frequencies of the highly dynamic external inputs and the limited availability of measures to reduce diffuse source loading.

View Article and Find Full Text PDF
Article Synopsis
  • Global warming is affecting lakes' thermal dynamics and mixing patterns, particularly highlighted by a study on Lake Sevan in Armenia.
  • The researchers developed a dual ensemble workflow that combines climate models with hydrodynamic lake models to analyze the impact of climate change across various scenarios.
  • Their findings predict significant changes by the end of the century, including increased surface temperatures, longer periods of stratification, and the loss of ice cover, indicating Lake Sevan's vulnerability to climate change while offering a more accurate uncertainty assessment for future studies.
View Article and Find Full Text PDF

Water-level reduction frequently occurs in deep reservoirs, but its effect on dissolved oxygen concentration is not well understood. In this study we used a well-established water quality model to illustrate effects of water level dynamics on oxygen concentration in Rappbode Reservoir, Germany. We then systematically elucidated the potential of selective withdrawal to control hypoxia under changing water levels.

View Article and Find Full Text PDF

We investigated trends in temperature, stratification, and hypolimnetic oxygen concentration of German lakes under climate change using observational data and hydrodynamic modelling. Observations from 46 lakes revealed that annually averaged surface temperatures increased by + 0.5 °C between 1990 and 2020 while bottom temperatures remained almost constant.

View Article and Find Full Text PDF

Fluctuations in dissolved oxygen (DO) contents in natural waters can become intense during cyanobacteria blooms. In a reconnaissance study, we investigated DO concentrations and stable isotope dynamics during a laboratory experiment with the cyanobacterium Planktothrix rubescens in order to obtain insights into primary production under specific conditions. This observation was extended to sub-daily timescales with alternating light and dark phases.

View Article and Find Full Text PDF

We coupled twenty-first century climate projections with a well-established water quality model to depict future ecological changes of Rappbode Reservoir, Germany. Our results document a chain of climate-driven effects propagating through the aquatic ecosystem and interfering with drinking water supply: intense climate warming (RCP8.5 scenario) will firstly trigger a strong increase in water temperatures, in turn leading to metalimnetic hypoxia, accelerating sediment nutrient release and finally boosting blooms of the cyanobacterium Planktothrix rubescens.

View Article and Find Full Text PDF

Aluminum salts are widely used to immobilize phosphorus (P) in lakes suffering from internal loading. However, longevity of treatments varies among lakes; some lakes eutrophy faster than others. We conducted biogeochemical investigations of sediments of a closed artificial Lake Barleber, Germany that was successfully remediated with aluminum sulfate in 1986.

View Article and Find Full Text PDF

Phosphorus (P) precipitation is among the most effective treatments to mitigate lake eutrophication. However, after a period of high effectiveness, studies have shown possible re-eutrophication and the return of harmful algal blooms. While such abrupt ecological changes were attributed to the internal P loading, the role of lake warming and its potential synergistic effects with internal loading, thus far, has been understudied.

View Article and Find Full Text PDF

The molecular composition of dissolved organic matter (DOM) is of relevance for global carbon cycling and important for drinking water processing also. The detection of variation of DOM composition as function of time and space from a methodological viewpoint is essential to observe DOM processing and was addressed so far. High resolution concerning DOM quality was achieved with Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS).

View Article and Find Full Text PDF

Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate change impacts, let alone project future changes to inform management. Here, we tackled this issue by investigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso‑ and eutrophic), both of which drain into the largest drinking water reservoir in Germany.

View Article and Find Full Text PDF

Dissolved oxygen (DO) dynamics of a temperate drinking water reservoir in the Harz Mountains (Germany) were investigated over a time period of 18 months. Via depth profiles in a fortnightly sampling resolution we were able to trace DO and temperature dynamics including the formation and breakdown of a Metalimnetic Oxygen Minimum (MOM) by means of DO concentration, saturation patterns and stable isotope ratios of dissolved oxygen (expressed as δO). Over the evaluation period, 19.

View Article and Find Full Text PDF

Seasonal climate forecasts produce probabilistic predictions of meteorological variables for subsequent months. This provides a potential resource to predict the influence of seasonal climate anomalies on surface water balance in catchments and hydro-thermodynamics in related water bodies (e.g.

View Article and Find Full Text PDF

Optical sensors for fluorescence of chlorophyll a (f-Chl a) and phycocyanin (f-PC) are increasingly used as a proxy for biomass of algae and cyanobacteria, respectively. They provide measurements at high-frequency and modest cost. These sensors require site-specific calibration due to a range of interferences.

View Article and Find Full Text PDF
Article Synopsis
  • In temperate lakes, phytoplankton growth during winter is influenced by both light and temperature, rather than light alone.
  • Rapid warming and ice-thaw events increase light exposure, initiating significant winter diatom blooms.
  • These findings suggest that winter phytoplankton dynamics are more sensitive to climate change, impacting nutrient cycling and the seasonal makeup of phytoplankton communities in lakes.
View Article and Find Full Text PDF

Dissolved organic matter plays an important role in aquatic ecosystems and poses a major problem for drinking water production. However, our understanding of DOM reactivity in natural systems is hampered by its complex molecular composition. Here, we used Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and data from two independent studies to disentangle DOM reactivity based on photochemical and microbial-induced transformations.

View Article and Find Full Text PDF

The thermal structure in reservoirs affects the development of aquatic ecosystems, and can be substantially influenced by climate change and management strategies. We applied a two-dimensional hydrodynamic model to explore the response of the thermal structure in Germany's largest drinking water reservoir, Rappbode Reservoir, to future climate projections and different water withdrawal strategies. We used projections for representative concentration pathways (RCP) 2.

View Article and Find Full Text PDF

Metalimnetic oxygen minima are observed in many lakes and reservoirs, but the mechanisms behind this phenomena are not well understood. Thus, we simulated the metalimnetic oxygen minimum (MOM) in the Rappbode Reservoir with a well-established two-dimensional water quality model (CE-QUAL-W2) to systematically quantify the chain of events leading to its formation. We used high-resolution measured data to calibrate the model, which accurately reproduced the physical (e.

View Article and Find Full Text PDF
Article Synopsis
  • Extreme weather events, particularly storms, have become more frequent and intense due to climate change, impacting ecosystems globally.
  • Storms influence lake environments through runoff and physical mixing, leading to changes in physical and chemical conditions that affect phytoplankton communities.
  • The study aims to synthesize current knowledge on how storms affect phytoplankton dynamics, identify research gaps, and propose future directions for understanding these impacts in various lake types.
View Article and Find Full Text PDF

Dam operations are known to have significant impacts on reservoir hydrodynamics and solute transport processes. The Gardiner Dam, one of the structures that forms the Lake Diefenbaker reservoir located in the Canadian Prairies, is managed for hydropower generation and agricultural irrigation and is known to have widely altering temperature regimes and nutrient circulations. This study applies the hydrodynamic and nutrient CE-QUAL-W2 model to explore how various withdrawal depths (5, 15, 25, 35, 45, and 55 m) influence the concentrations and distribution of nutrients, temperature, and dissolved oxygen (DO) within the Lake Diefenbaker reservoir.

View Article and Find Full Text PDF

Freshwater ecosystems including lakes and reservoirs are hot spots for retention of excess nitrogen (N) from anthropogenic sources, providing valuable ecological services for downstream and coastal ecosystems. Despite previous investigations, current quantitative understanding on the influential factors and underlying mechanisms of N retention in lentic freshwater systems is insufficient due to data paucity and limitation of modeling techniques. Our ability to reliably predict N retention for these systems therefore remains uncertain.

View Article and Find Full Text PDF

We investigate the personalisation and prediction accuracy of mathematical models for white blood cell (WBC) count dynamics during consolidation treatment using intermediate or high-dose cytarabine (Ara-C) in acute myeloid leukaemia (AML). Ara-C is the clinically most relevant cytotoxic agent for AML treatment. We extend a mathematical model of myelosuppression and a pharmacokinetic model of Ara-C with different hypotheses of Ara-C's pharmacodynamic effects.

View Article and Find Full Text PDF

Dissolved oxygen is a key player in water quality. Stratified water bodies show distinct vertical patterns of oxygen concentration, which can originate from physical, chemical or biological processes. We observed a pronounced metalimnetic oxygen minimum in the low-nutrient Rappbode Reservoir, Germany.

View Article and Find Full Text PDF

Lake ecosystems are sensitive recorders of environmental changes that provide continuous archives at annual to decadal resolution over thousands of years. The systematic investigation of land use changes and emission of pollutants archived in Holocene lake sediments as well as the reconstruction of contamination, background conditions, and sensitivity of lake systems offer an ideal opportunity to study environmental dynamics and consequences of anthropogenic impact that increasingly pose risks to human well-being. This paper discusses the use of sediment and other lines of evidence in providing a record of historical and current contamination in lake ecosystems.

View Article and Find Full Text PDF