Publications by authors named "Rinita Rajbhandari"

The electrical double-layer supercapacitance performance of the nanoporous carbons prepared from the (Amala) seed by chemical activation using the potassium hydroxide (KOH) activator is reported. KOH activation was carried out at different temperatures (700-1000 °C) under nitrogen gas atmosphere, and in a three-electrode cell set-up the electrochemical measurements were performed in an aqueous 1 M sulfuric acid (HSO) solution. Because of the hierarchical pore structures with well-defined micro- and mesopores, seed-derived carbon materials exhibit high specific surface areas in the range of 1360 to 1946 m g, and the total pore volumes range from 0.

View Article and Find Full Text PDF

Nanoporous activated carbon materials derived from agro-wastes could be suitable low-cost electrode materials for high-rate performance electrochemical supercapacitors. Here we report high surface area nanoporous carbon materials derived from Lapsi seed agro-waste prepared by zinc chloride (ZnCl) activation at 700 °C. Powder X-ray diffraction (pXRD) and Raman scattering confirmed the amorphous structure of the resulting carboniferous materials, which also incorporate oxygen-containing functional groups as confirmed by Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Series of activated carbons (ACs) have been prepared from Lapsi (Choerospondias axillaris) seed powder (LSP) by chemical activation with zinc chloride (ZnCI2) and the effects of ZnCl2 impregnation ratio, carbonization time, and precursor sources on the structure and properties of ACs have been systematically investigated. Carbonization was carried out at 400 degrees C and the ratio of LSP and ZnCI2 was varied from LSP:ZnCl2 = 1:0.25 (AC-0.

View Article and Find Full Text PDF

Activated carbons were prepared from Lapsi (Choerospondias axillaris) seed stone by zinc chloride (ZnCl2) activation at three different Lapsi seed powder (LSP):ZnCl2 ratios: 1:0.5 (AC-0.5), 1:1 (AC-1), and 1:2 (AC-2).

View Article and Find Full Text PDF