Publications by authors named "Rinat Sharipov"

Article Synopsis
  • Brain injury causes neuroinflammation, high extracellular glutamate levels, and mitochondrial dysfunction, all contributing to neuronal death.
  • The study analyzed patients with aneurysmal subarachnoid hemorrhage and conducted in vitro experiments to investigate the impact of these mechanisms on neuron health.
  • Results indicate that the inhibition of the 2-oxoglutarate dehydrogenase complex by nitric oxide leads to increased extracellular glutamate and subsequent neuronal death, while thiamine can help reverse this toxicity.
View Article and Find Full Text PDF

Lipopolysaccharide (LPS), a fragment of the bacterial cell wall, specifically interacting with protein complexes on the cell surface, can induce the production of pro-inflammatory and apoptotic signaling molecules, leading to the damage and death of brain cells. Similar effects have been noted in stroke and traumatic brain injury, when the leading factor of death is glutamate (Glu) excitotoxicity too. But being an amphiphilic molecule with a significant hydrophobic moiety and a large hydrophilic region, LPS can also non-specifically bind to the plasma membrane, altering its properties.

View Article and Find Full Text PDF

Background: Disorders of mitochondrial Ca homeostasis play a key role in the glutamate excitotoxicity of brain neurons. DS16570511 (DS) is a new penetrating inhibitor of mitochondrial Ca uniporter complex (MCUC). The paper examines the effects of DS on the cultivated cortical neurons and isolated mitochondria of the rat brain.

View Article and Find Full Text PDF

Neural activity depends on the maintenance of ionic and osmotic homeostasis. Under these conditions, the cell volume must be regulated to maintain optimal neural function. A disturbance in the neuronal volume regulation often occurs in pathological conditions such as glutamate excitotoxicity.

View Article and Find Full Text PDF