The mammary epithelium is thought to be stabilized by cell-cell adhesion mediated mainly by E-cadherin (E-cad). Here, we show that another cadherin, retinal cadherin (R-cad), is critical for maintenance of the epithelial phenotype. R-cad is expressed in nontransformed mammary epithelium but absent from tumorigenic cell lines.
View Article and Find Full Text PDFN-cadherin is up-regulated in aggressive breast carcinomas, but its mechanism of action in vivo remains unknown. Transgenic mice coexpressing N-cadherin and polyomavirus middle T antigen (PyVmT) in the mammary epithelium displayed increased pulmonary metastasis, with no differences in tumor onset or growth relative to control PyVmT mice. PyVmT-N-cadherin tumors contained higher levels of phosphorylated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) than PyVmT controls, and phosphorylated ERK staining was further increased in pulmonary metastases.
View Article and Find Full Text PDFUpregulation of N-cadherin in epithelial tumor cells has been shown to contribute to the invasive/metastatic phenotype. It remains however to be determined whether N-cadherin is increased in human breast cancers with enhanced malignant potential. We examined a large number of invasive breast cancer specimens (n = 114) for N- and E-cadherin.
View Article and Find Full Text PDFThe loss of E-cadherin expression or function in epithelial carcinomas has long been thought as a primary reason for disruption of tight epithelial cell-cell contacts and release of invasive tumor cells from the primary tumor. Indeed, E-cadherin serves as a widely acting suppressor of invasion and growth of epithelial cancers, and its functional elimination represents a key step in the acquisition of the invasive phenotype for many tumors. Recent evidence indicates, however, that in addition to the loss of the "invasion-suppressor" E-cadherin, another adhesion molecule, N-cadherin, becomes upregulated in invasive tumor cell lines.
View Article and Find Full Text PDF