Publications by authors named "Rina Yamin"

Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators.

View Article and Find Full Text PDF

This review focuses on the vascular smooth muscle cells present in the medial layer of the blood vessels wall in the fully differentiated state (dVSMCs). The dVSMC contractile phenotype enables these cells to respond in a highly regulated manner to changes in extracellular stimuli. Through modulation of vascular contractile force and vascular compliance dVSMCs regulate blood pressure and blood flow.

View Article and Find Full Text PDF

Background: The abnormal accumulation of amyloid-beta peptide is believed to cause malfunctioning of neurons in the Alzheimer's disease brain. Amyloid-beta exists in different assembly forms in the aging mammalian brain including monomers, oligomers, and aggregates, and in senile plaques, fibrils. Recent findings suggest that soluble amyloid-beta oligomers may represent the primary pathological species in Alzheimer's disease and the most toxic form that impairs synaptic and thus neuronal function.

View Article and Find Full Text PDF

Considerable evidence indicates that the amyloid-beta (Abeta) peptide, a proteolytic fragment of the amyloid precursor protein, is the pathogenic agent in Alzheimer's disease (AD). A number of proteases have been reported as capable of degrading Abeta, among them: neprilysin, insulin-degrading enzyme, endothelin-converting enzyme-1 and -2, angiotensin-converting enzyme and plasmin. These proteases, originating from a variety of cell types, degrade Abeta of various conformational states and in different cellular locations.

View Article and Find Full Text PDF

The amyloid precursor protein (APP) must fulfill important roles based on its sequence conservation from fly to human. Although multiple functions for APP have been proposed, the best-known role for this protein is as the precursor of Abeta peptide, a neurotoxic 39-43-amino acid peptide crucial to the pathogenesis of Alzheimer's disease. To investigate additional roles for APP with an eye toward understanding the molecular basis of the pleiotropic effects ascribed to APP, we isolated proteins that interacted with the plasma membrane isoform of APP.

View Article and Find Full Text PDF

To compare the modulatory effects of different prostaglandins on collagen gene expression in human chondrocytes, PGE(2), PGE(1), misoprostol (PGE(1) analog), and PGF(2alpha) (10, 50 and 100 ng ml(minus sign1)) were added to human chondrocytes with or without interleukin-1beta (IL-1beta) in the presence of indomethacin to inhibit endogenous prostaglandin synthesis and the effects evaluated on chondrocyte morphology, collagen synthesis, and procollagen mRNA levels. The effects of prostaglandins on the expression of collagen gene regulatory sequences were examined using transient transfection assays of reporter gene constructs in human chondrocytes and BALB/c3T3 fibroblasts, PGE(1), misoprostol, and PGF(2alpha), similar to PGE(2), inhibited type I collagen gene expression in fibroblasts and promoted type II collagen gene expression in chondrocytes. PGE(2), the major inflammatory prostaglandin produced by IL-1-activated chondrocytes and fibroblasts, and PGF(2alpha) were somewhat more potent than the anti-inflammatory prostaglandins PGE(1) and misoprostol in counteracting the IL-1-induced suppression of type II collagen gene expression by chondrocytes and stimulation of type I collagen gene expression by fibroblasts.

View Article and Find Full Text PDF