The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions.
View Article and Find Full Text PDFSialylation, the final stage of post-translational modification of proteins, is achieved in the Golgi apparatus and is related to the malignant phenotype of cancer. Disialylation of ganglioside (GD3) by St8sia1 and polysialylation by St8sia2 and 4 have been shown to be related to malignant phenotypes; however, di/oligosialylation by St8sia6 is still unknown. In this study, we analyzed the malignant phenotype of St8sia6 and found that upregulation of St8sia6 in melanoma B16 cells increased anchorage-independent cell growth, which was not due to sialic acid cleavage by a sialidase.
View Article and Find Full Text PDFGangliosides are important components of the membrane and are involved in many biological activities. St8sia5 is an α2,8-sialyltransferase involved in ganglioside synthesis, and has three isoforms. In this study, we analyzed the features of three isoforms, St8sia5-S, -M, and -L that had not been analyzed, and found that only St8sia5-L was localized in the Golgi, while the majority of St8sia5-M and -S were localized in the ER.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2021
Siglecs are sialic acid (Sia)-binding immunoglobulin-like lectins; the majority of Siglecs functions as transmembrane receptors on the immune cells via Sia residues. Recently, a new Sia binding site in Siglec-7, termed site 2, where arginine (R) 67 was critical, was identified by computational modeling and biochemical analyses, relative to the primary Sia binding site, termed site 1, containing critical R124. Here, the presence of a new essential R94 residue, which is completely conserved among all identified Siglecs, was demonstrated.
View Article and Find Full Text PDF