Purpose: To report the clinical, pathologic, and genetic findings in a family with early-onset pterygia, corneal vascularization, and corneal myofibromatous lesions.
Methods: We performed clinical, pathologic, and genetic analysis of 12 members of a family originating in Puebla Mexico, who manifested with pterygia/pseudopterygia and corneal opacification transmitted in an autosomal-dominant inheritance pattern. Three unaffected family members also were evaluated.
Deafness, dystonia, and central hypomyelination (DDCH) syndrome (OMIM #300475) is a rare X-linked genetic disorder characterized by developmental delays, deafness, central hypomyelination, and dystonia. We report the first Korean familial case involving twin boy and girl carrying a novel pathogenic variant which was inherited from their mother. The male proband, born prematurely with very low birth weight (VLBW), exhibited severe global developmental delay, microcephaly, failure to thrive, dystonia, seizures, sensorineural hearing loss (SNHL) requiring cochlear implantation, and mild facial dysmorphism.
View Article and Find Full Text PDFWe investigated the effectiveness of exome sequencing (ES) in diagnosing ethnically diverse patients with rare genetic disorders. A total of 18,994 patients referred to a single reference laboratory for ES between 2020 and 2022 were studied for the diagnostic rate and factors influencing the diagnostic rate. The overall diagnostic rate was 31.
View Article and Find Full Text PDFBackground: Leber congenital amaurosis (LCA), the most severe form of inherited retinal dystrophy, is a rare, heterogeneous, genetic eye disease associated with severe congenital visual impairment. RPE65, one of the causative genes for LCA, encodes retinoid isomerohydrolase, an enzyme that plays a critical role in regenerating visual pigment in photoreceptor cells.
Methods: Exome sequencing (ES) was performed on a patient with suspected LCA.
Biochem Biophys Res Commun
February 2025
ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.
View Article and Find Full Text PDFInherited and developmental eye diseases are quite diverse and numerous, and determining their genetic cause is challenging due to their high allelic and locus heterogeneity. New molecular approaches, such as whole exome sequencing (WES), have proven to be powerful molecular tools for addressing these cases. The present study used WES to identify the genetic etiology in ten unrelated Mexican pediatric patients with complex ocular anomalies and other systemic alterations of unknown etiology.
View Article and Find Full Text PDFAm J Med Genet A
October 2024
Background And Objectives: Exome sequencing (ES) demonstrates a 20-50 percent diagnostic yield for patients with a suspected monogenic neurologic disease. Despite the proven efficacy in achieving a diagnosis for such patients, multiple barriers for obtaining exome sequencing remain. This study set out to assess the efficacy of ES in patients with primary neurologic phenotypes who were appropriate candidates for testing but had been unable to pursue clinical testing.
View Article and Find Full Text PDFHereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed.
View Article and Find Full Text PDFThe homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis. Reduced PGC-1α abundance is linked to skeletal muscle weakness in aging or pathological conditions, such as neurodegenerative diseases and diabetes; thus, elevating PGC-1α abundance might be a promising strategy to treat muscle aging. Here, we performed high-throughput screening and identified a natural compound, farnesol, as a potent inducer of PGC-1α.
View Article and Find Full Text PDFEpilepsy is a group of neurological disorders characterized by recurring seizures and fits. The Epilepsy genes can be classified into four distinct groups, based on involvement of these genes in different pathways leading to Epilepsy as a phenotype. Genetically the disease has been associated with various pathways, leading to pure epilepsy-related disorders caused by variations, or involving physical or systemic issues along with epilepsy caused by and , or developed by genes that are putatively involved in epilepsy lead by variations.
View Article and Find Full Text PDFBackground/purpose: To evaluate clinical outcomes and assess genotype-phenotype correlations in patients with familial exudative vitreoretinopathy (FEVR).
Methods: Clinical charts of 40 patients with FEVR were reviewed. FEVR was staged per Pendergast and Trese, and retinal dragging and folds further classified per Yaguchi et al.
Background: Optic atrophy-13 with retinal and foveal abnormalities (OPA13) (MIM #165510) is a mitochondrial disease in which apparent bilateral optic atrophy is present and sometimes followed by retinal pigmentary changes or photoreceptors degeneration. OPA13 is caused by heterozygous mutation in the SSBP1 gene, associated with variable mitochondrial dysfunctions.
Results: We have previously reported a 16-year-old Taiwanese male diagnosed with OPA13 and SSBP1 variant c.
Optic atrophy-13 with retinal and foveal abnormalities (OPA13) (MIM #165510) is a mitochondrial disease in which apparent bilateral optic atrophy is present and sometimes followed by retinal pigmentary changes or photoreceptors degeneration. OPA13 is caused by heterozygous mutation in the gene, associated with variable mitochondrial dysfunctions. We have previously reported a 16-year-old Taiwanese male diagnosed with OPA13 and variant c.
View Article and Find Full Text PDFBackground: Usher syndrome (USH) is an autosomal recessive disorder primarily responsible for deaf-blindness. Patients with subtype Usher syndrome type 1 (USH1) typically experience congenital sensorineural hearing loss, abnormal vestibular function, and retinitis pigmentosa (RP). Here we present a case of Usher syndrome type 1F (USH1F) with a novel homozygous variant in the calcium-dependent cell-cell adhesion protocadherin-15 (PCDH15) gene.
View Article and Find Full Text PDFAlthough Krüppel-associated box domain-containing zinc-finger proteins (K-ZNFs) may be associated with sophisticated gene regulation in higher organisms, the physiological functions of most K-ZNFs remain unknown. The Zfp212 protein was highly conserved in mammals and abundant in the brain; it was mainly expressed in the cerebellum (Cb). Zfp212 (mouse homolog of human ZNF212) knockout (Zfp212-KO) mice showed a reduction in survival rate compared to wild-type mice after 20 months of age.
View Article and Find Full Text PDFAccumulation of the parkin-interacting substrate (PARIS; ), due to inactivation of parkin, contributes to Parkinson's disease (PD) through repression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α; ) activity. Here, we identify farnesol as an inhibitor of PARIS. Farnesol promoted the farnesylation of PARIS, preventing its repression of PGC-1α via decreasing PARIS occupancy on the promoter.
View Article and Find Full Text PDFα-Synuclein (α-syn) is a hallmark amyloidogenic protein component of Lewy bodies in dopaminergic neurons affected by Parkinson's disease (PD). Despite the multi-faceted gene regulation of α-syn in the nucleus, the mechanism underlying α-syn crosstalk in chromatin remodeling in PD pathogenesis remains elusive. Here, we identified transcriptional adapter 2-alpha (TADA2a) as a novel binding partner of α-syn using the BioID system.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2018
Our previous study found that PARIS (ZNF746) transcriptionally suppressed transketolase (TKT), a key enzyme in pentose phosphate pathway (PPP) in the substantia nigra (SN) of AAV-PARIS injected mice. In this study, we revealed that PARIS overexpression reprogrammed glucose metabolic pathway, leading to the increment of glycolytic proteins along with TKT reduction in the SN of AAV-PARIS injected mice. Knock-down of TKT in differentiated SH-SY5Y cells led to an increase of glycolytic enzymes and decrease of PPP-related enzymes whereas overexpression of TKT restored PARIS-mediated glucose metabolic shift, suggesting that glucose metabolic alteration by PARIS is TKT-dependent.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2017
Recently, PARIS (ZNF746) is introduced as authentic substrate of parkin and transcriptionally represses PGC-1α by binding to insulin responsive sequences (IRSs) in the promoter of PGC-1α. The overexpression of PARIS selectively leads to the loss of dopaminergic neurons (DN) and mitochondrial abnormalities in the substantia nigra (SN) of Parkinson's disease (PD) models. To identify PARIS target molecules altered in SN region-specific manner, LC-MS/MS-based quantitative proteomic analysis is employed to investigate proteomic alteration in the cortex, striatum, and SN of AAV-PARIS injected mice.
View Article and Find Full Text PDFProgressive dopaminergic neurodegeneration is responsible for the canonical motor deficits in Parkinson's disease (PD). The widely prescribed anti-diabetic medicine metformin is effective in preventing neurodegeneration in animal models; however, despite the significant potential of metformin for treating PD, the therapeutic effects and molecular mechanisms underlying dopaminergic neuroprotection by metformin are largely unknown.In this study, we found that metformin induced substantial proteomic changes, especially in metabolic and mitochondrial pathways in the substantia nigra (SN).
View Article and Find Full Text PDFDuring normal aging, the number of dopaminergic (DA) neurons in the substantia nigra progressively diminishes, although massive DA neuronal loss is a hallmark sign of Parkinson's disease. Unfortunately, there is little known about the molecular events involved in age-related DA neuronal loss. In this study, we found that (1) the level of parkin was decreased in the cerebellum, brain stem, substantia nigra, and striatum of aged mice, (2) diaminodiphenyl sulfone (DDS) restored the level of parkin, (3) DDS prevented age-dependent DA neuronal loss, and (4) DDS protected SH-SY5Y cells from 1-methyl-4-phenylpyridinium and hydrogen peroxide.
View Article and Find Full Text PDFNeurosci Lett
September 2014
Metformin, a potent antihyperglycemic agent is recommended as the first-line oral therapy for type 2 diabetes (T2D). Recently, metformin has been reported to be beneficial to neurodegenerative disease models. However, the putative mechanisms underlying the neuroprotective effects of metformin in disease models are unknown.
View Article and Find Full Text PDF