Crystal violet (CV) dye, because of its non-biodegradability and harmful effects, poses a significant challenge for wastewater treatment. This study addresses the efficiency of easily accessible coal fly ash (CFA)-based adsorbents such as raw coal fly ash (RCFA) and surface enhanced coal fly ash (SECFA), in removing CV dye from waste effluents. Various analytical techniques such as FTIR, XRD, SEM, TEM, BET, zeta sizer and zeta potential were employed for the characterization of the adsorbents and dye-loaded samples.
View Article and Find Full Text PDFThe intended research aims to explore the convection phenomena of a hybrid nanofluid composed of gold and silver nanoparticles. This research is novel and significant because there is a lack of existing studies on the flow behavior of hybrid nanoparticles with important physical properties of blood base fluids, especially in the case of sidewall ruptured dilated arteries. The implementation of combined nanoparticles rather than unadulterated nanoparticles is one of the most crucial elements in boosting the thermal conduction of fluids.
View Article and Find Full Text PDFThis groundbreaking study pioneers the exploration of the therapeutic implications of a constant magnetic field simultaneously with hybrid nanoparticles on blood flow within a tapered artery, characterized by multiple stenosis along its exterior walls and a central thrombus, employing three-dimensional bio-fluid simulations. In addition, a magnetized catheter is inserted into the thrombus to increase the therapeutic potential of this novel method. The flow condition under consideration has applications in targeted medication distribution, improved medical device design, and improved diagnostics, as well as in advancing healthcare and biomedical engineering.
View Article and Find Full Text PDFThis article scrutinizes blood circulation through an artery having magnetized hybrid nanoparticles (silver and gold) with multiple stenoses at the outer walls and erratic thrombus of different radii at the center. In the realm of biomedical innovation, magnetized hybrid nanoparticles emerge as a captivating frontier. These nanoparticles, amalgamating diverse materials, exhibit magnetic properties that engender novel prospects for targeted drug delivery, medical imaging enhancement, and therapeutic interventions.
View Article and Find Full Text PDF