Publications by authors named "Rimmington D"

Liver X receptor-α (LXRα) regulates cellular cholesterol abundance and potently activates hepatic lipogenesis. Here we show that at least 1 in 450 people in the UK Biobank carry functionally impaired mutations in LXRα, which is associated with biochemical evidence of hepatic dysfunction. On a western diet, male and female mice homozygous for a dominant negative mutation in LXRα have elevated liver cholesterol, diffuse cholesterol crystal accumulation and develop severe hepatitis and fibrosis, despite reduced liver triglyceride and no steatosis.

View Article and Find Full Text PDF

Aims: Heart failure and associated cachexia is an unresolved and important problem. This study aimed to determine the factors that contribute to cardiac cachexia in a new model of heart failure in mice that lack the integrated stress response (ISR) induced eIF2α phosphatase, PPP1R15A.

Methods And Results: Mice were irradiated and reconstituted with bone marrow cells.

View Article and Find Full Text PDF

Background: Dissociation is a feature of Borderline Personality Disorder (BPD), but rarely a focus for research, particularly in the perinatal literature. BPD partly has its aetiology in childhood and is characterised by emotional changes and difficulty with self-coherence that impacts on the processes of caregiving.

Methods: A scoping review was conducted to synthesise current perspectives on the effect of dissociation in caregivers with BPD, particularly regarding the impact of caregiver dissociation on the interactional quality of relationship within parent-child dyads.

View Article and Find Full Text PDF

The hormone GDF15 is secreted in response to cellular stressors. Metformin elevates circulating levels of GDF15, an action important for the drug's beneficial effects on body weight. Metformin can also inhibit mammalian respiratory complex I, leading to decreases in ATP:AMP ratio, activation of AMP Kinase (AMPK), and increased GDF15 production.

View Article and Find Full Text PDF

GDF15, a hormone acting on the brainstem, has been implicated in the nausea and vomiting of pregnancy, including its most severe form, hyperemesis gravidarum (HG), but a full mechanistic understanding is lacking. Here we report that fetal production of GDF15 and maternal sensitivity to it both contribute substantially to the risk of HG. We confirmed that higher GDF15 levels in maternal blood are associated with vomiting in pregnancy and HG.

View Article and Find Full Text PDF

The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalog and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here, we present an integrated reference atlas, 'HypoMap,' of the murine hypothalamus, consisting of 384,925 cells, with the ability to incorporate new additional experiments.

View Article and Find Full Text PDF

The state of somatic energy stores in metazoans is communicated to the brain, which regulates key aspects of behaviour, growth, nutrient partitioning and development. The central melanocortin system acts through melanocortin 4 receptor (MC4R) to control appetite, food intake and energy expenditure. Here we present evidence that MC3R regulates the timing of sexual maturation, the rate of linear growth and the accrual of lean mass, which are all energy-sensitive processes.

View Article and Find Full Text PDF

Neuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat mice that carry a paternal null allele and do not express Nnat.

View Article and Find Full Text PDF

An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic-pituitary-adrenal (HPA) axis in mice and rats.

View Article and Find Full Text PDF

Objective: The area postrema (AP) and nucleus tractus solitarius (NTS) located in the hindbrain are key nuclei that sense and integrate peripheral nutritional signals and consequently regulate feeding behaviour. While single-cell transcriptomics have been used in mice to reveal the gene expression profile and heterogeneity of key hypothalamic populations, similar in-depth studies have not yet been performed in the hindbrain.

Methods: Using single-nucleus RNA sequencing, we provide a detailed survey of 16,034 cells within the AP and NTS of mice in the fed and fasted states.

View Article and Find Full Text PDF

Even though metformin is widely used to treat type2 diabetes, reducing glycaemia and body weight, the mechanisms of action are still elusive. Recent studies have identified the gastrointestinal tract as an important site of action. Here we used intestinal organoids to explore the effects of metformin on intestinal cell physiology.

View Article and Find Full Text PDF

Some imprinted genes exhibit parental origin specific expression bias rather than being transcribed exclusively from one copy. The physiological relevance of this remains poorly understood. In an analysis of brain-specific allele-biased expression, we identified that Trappc9, a cellular trafficking factor, was expressed predominantly (~70%) from the maternally inherited allele.

View Article and Find Full Text PDF

Metformin, the world's most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk. More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner. The molecular mechanisms by which metformin lowers body weight are unknown.

View Article and Find Full Text PDF

GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression.

View Article and Find Full Text PDF

Profound hyperphagia is a major disabling feature of Prader-Willi syndrome (PWS). Characterization of the mechanisms that underlie PWS-associated hyperphagia has been slowed by the paucity of animal models with increased food intake or obesity. Mice with a microdeletion encompassing the Snord116 cluster of noncoding RNAs encoded within the Prader-Willi minimal deletion critical region have previously been reported to show growth retardation and hyperphagia.

View Article and Find Full Text PDF

Context: Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance.

Objective/main Outcome Measures: We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP.

View Article and Find Full Text PDF

An intergenic region of human chromosome 2 (2p25.3) harbors genetic variants which are among those most strongly and reproducibly associated with obesity. The gene closest to these variants is , although the molecular mechanisms mediating these effects remain entirely unknown.

View Article and Find Full Text PDF

Objective: Arcuate proopiomelanocortin (POMC) neurons are critical nodes in the control of body weight. Often characterized simply as direct targets for leptin, recent data suggest a more complex architecture.

Methods: Using single cell RNA sequencing, we have generated an atlas of gene expression in murine POMC neurons.

View Article and Find Full Text PDF

Melanocortin receptor accessory protein 2 (MRAP2) is a transmembrane accessory protein predominantly expressed in the brain. Both global and brain-specific deletion of Mrap2 in mice results in severe obesity. Loss-of-function MRAP2 mutations have also been associated with obesity in humans.

View Article and Find Full Text PDF

More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, "on/off" manner. Trim28(+/D9) mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates.

View Article and Find Full Text PDF

Objective: Loss of function FTO mutations significantly impact body composition in humans and mice, with Fto-deficient mice reported to resist the development of obesity in response to a high-fat diet (HFD). We aimed to further explore the interactions between FTO and HFD and determine if FTO can influence the adverse metabolic consequence of HFD.

Methods: We studied mice deficient in FTO in two well validated models of leptin resistance (HFD feeding and central palmitate injection) to determine how Fto genotype may influence the action of leptin.

View Article and Find Full Text PDF

The gut endocrine system is emerging as a central player in the control of appetite and glucose homeostasis, and as a rich source of peptides with therapeutic potential in the field of diabetes and obesity. In this study we have explored the physiology of insulin-like peptide 5 (Insl5), which we identified as a product of colonic enteroendocrine L-cells, better known for their secretion of glucagon-like peptide-1 and peptideYY. i.

View Article and Find Full Text PDF

SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in severe growth retardation, and mice globally overexpressing FTO are obese. The mechanisms through which FTO influences growth and body composition are unknown.

View Article and Find Full Text PDF

The strongest BMI-associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition.

View Article and Find Full Text PDF