Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/Nas). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches.
View Article and Find Full Text PDFA novel peptide AnmTX Sco 9a-1 with the β-hairpin fold was isolated from the swimming sea anemone (Actinostolidae family). The peptide consists of 28 amino acid residues, including modified hydroxyproline residue, and its measured molecular mass is 2960 Da. The peptide was not toxic on mice; however, it stimulated their exploratory motivation and active search behavior, and demonstrated an anti-anxiety effect.
View Article and Find Full Text PDFThe nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels, provide cholinergic signaling, and are modulated by various venom toxins and drugs in addition to neurotransmitters. Here, four APETx-like toxins, including two new toxins, named Hmg 1b-2 Met and Hmg 1b-5, were isolated from the sea anemone and characterized as novel nAChR ligands and acid-sensing ion channel (ASIC) modulators. All peptides competed with radiolabeled α-bungarotoxin for binding to muscle-type and human α7 nAChRs.
View Article and Find Full Text PDFCurrently, five peptide modulators of acid-sensing ion channels (ASICs) attributed to structural class 1b of sea anemone toxins have been described. The APETx2 toxin is the first and most potent ASIC3 inhibitor, so its homologs from sea anemones are known as the APETx-like peptides. We have discovered that two APETx-like peptides from the sea anemone , Hcr 1b-3 and Hcr 1b-4, demonstrate different effects on rASIC1a and rASIC3 currents.
View Article and Find Full Text PDF