Comp Biochem Physiol B Biochem Mol Biol
January 2025
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated.
View Article and Find Full Text PDFImpairment of the blood-brain barrier (BBB) integrity is implicated in the numerous neurological disorders associated with neuroinflammation, neurodegeneration and aging. It is now evident that short-chain fatty acids (SCFAs), mainly acetate, butyrate and propionate, produced by anaerobic bacterial fermentation of the dietary fiber in the intestine, have a key role in the communication between the gastrointestinal tract and nervous system and are critically important for the preservation of the BBB integrity under different pathological conditions. The effect of SCFAs on the improvement of the compromised BBB is mainly based on the decrease in paracellular permeability via restoration of junctional complex proteins affecting their transcription, intercellular localization or proteolytic degradation.
View Article and Find Full Text PDFLipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
April 2019
Previously we showed that arginine-vasotocin (AVT)-stimulated osmotic water permeability (OWP) of the frog urinary bladder was decreased if the mucosal side of the bladder has been naturally colonized by Gram-negative bacteria, or if bacterial lipopolysaccharide (LPS) was introduced into the lumen of the isolated bladder (J. Exp. Zool.
View Article and Find Full Text PDFThe effect of bacterial lipopolysaccharide (LPS) on eukaryotic cell could be accompanied by a significant metabolic shift that includes accumulation of triacylglycerol (TAG) in lipid droplets (LD), ubiquitous organelles associated with fatty acid storage, energy regulation and demonstrated tight spatial and functional connections with mitochondria. The impairment of mitochondrial activity under pathological stimuli has been shown to provoke TAG storage and LD biogenesis. However the potential mechanisms that link mitochondrial disturbances and TAG accumulation are not completely understood.
View Article and Find Full Text PDFExogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts.
View Article and Find Full Text PDFIn frogs and toads the urinary bladder is very important for the maintenance of water balance due to its ability to store water which can be reabsorbed under the action of arginine-vasotocin (AVT). The usage of isolated bladders as a model for studying the osmotic water permeability (OWP) regulation has a disadvantage which relates to high variability of AVT effect among individuals, some showing insensitivity to the hormone. We hypothesized that the response of the bladder to AVT could depend on the colonization of the mucosal epithelium by Gram-negative bacteria.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2012
As in mammals, epithelium of the amphibian urinary bladder forms a barrier to pathogen entry and is a first line of defense against penetrating microorganisms. We investigated the effect of Escherichia coli LPS on generation of nitric oxide (NO), a critically important mediator during infectious processes, by primary cultured frog (Rana temporaria) urinary bladder epithelial cells (FUBEC). It was found that FUBEC constitutively express Toll-like receptor 4 (TLR4), a receptor of LPS, and respond to LPS (10 μg/ml) by stimulation of inducible nitric oxide synthase (iNOS) mRNA/protein expression and NOS activity measured by nitrite produced in the culture medium and by citrulline assay.
View Article and Find Full Text PDFBackground And Purpose: cGMP is involved in the regulation of many cellular processes including cardiac and smooth muscle contractility, aldosterone synthesis and inhibition of platelet activation. Intracellular effects cGMP are mediated by cGMP-dependent PKs, cGMP-regulated PDEs and cGMP-gated ion channels. PKG inhibitors are widely used to discriminate PKG-specific effects.
View Article and Find Full Text PDFPGE(2) is a well-known inhibitor of the antidiuretic hormone-induced increase of osmotic water permeability (OWP) in different osmoregulatory epithelia; however, the mechanisms underlying this effect of PGE(2) are not completely understood. Here, we report that, in the frog Rana temporaria urinary bladder, EP(1)-receptor-mediated inhibition of arginine-vasotocin (AVT)-induced OWP by PGE(2) is attributed to increased generation of nitric oxide (NO) in epithelial cells. It was shown that the inhibitory effect of 17-phenyl-trinor-PGE(2) (17-ph-PGE(2)), an EP(1) agonist, on AVT-induced OWP was significantly reduced in the presence of 7-nitroindazole (7-NI), a neuronal NO synthase (nNOS) inhibitor.
View Article and Find Full Text PDFThe present study addressed the question of whether nitric oxide (NO) participates in regulation of osmotic water permeability in the urinary bladder of the frog Rana temporaria L. Experiments were carried out on isolated, paired hemi-bladders filled with amphibian Ringer solution diluted 1:10 with distilled water. Sodium nitroprusside (SNP, 125-250 micro M), an NO donor, markedly attenuated the increase of osmotic water flow elicited by arginine-vasotocin (AVT) (AVT 10(-10) M: 2.
View Article and Find Full Text PDFAldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone.
View Article and Find Full Text PDFThe present study was performed to investigate the role of prostaglandin E(2) (PGE(2)) in the regulation of urea transport in the frog urinary bladder, which is known to occur via a specialized arginine-vasotocin- (AVT-) regulated urea transporter. The bladders isolated from Rana temporaria L. were filled with amphibian Ringer solution containing 370 Bq/ml (0.
View Article and Find Full Text PDF