Background: Diabetes treatment is intended to maintain near-normal glycemic levels. Self-monitoring of blood glucose (SMBG) allows patients to track their BG levels compared with glycemic targets and is associated with improved health outcomes. Because of the importance of SMBG, it is essential that results are accurate to prevent errors in nutritional intake and drug dosing.
View Article and Find Full Text PDFObjective: We previously showed that exenatide (EXE) enhanced insulin secretion after 1 year of treatment, relative to insulin glargine (GLAR), with a similar glucose-lowering action. These effects were not sustained after a 4-week off-drug period. This article reports the results after additional 2 years of exposure.
View Article and Find Full Text PDFObjective: The objective of the present study was to investigate the effects of one-year treatment with exenatide or Insulin Glargine, followed by a 5-week off-drug period, on postprandial lipidaemia, glycaemia and measures of oxidative stress.
Methods: Sixty-nine metformin-treated patients with type 2 diabetes were randomised (using apermuted block randomisation scheme stratified by site and baseline HbA(1c) stratum (< or = 8.5% or >8.
Objective: To study the effect of exenatide on body composition and circulating cardiovascular risk biomarkers.
Research Design And Methods: Metformin-treated patients with type 2 diabetes (N = 69) were randomized to exenatide or insulin glargine and treated for 1 year. Body composition was evaluated by dual-energy X-ray absorptiometry.
Objective: Traditional blood glucose-lowering agents do not sustain adequate glycemic control in most type 2 diabetic patients. Preclinical studies with exenatide have suggested sustained improvements in beta-cell function. We investigated the effects of 52 weeks of treatment with exenatide or insulin glargine followed by an off-drug period on hyperglycemic clamp-derived measures of beta-cell function, glycemic control, and body weight.
View Article and Find Full Text PDF