The combination of nanoparticles (NPs) and cell-penetrating peptide (CPP) represents a new opportunity to develop plasmid DNA (pDNA) delivery systems with desirable properties for lung delivery. In this study, poly(lactide-co-glycolide) (PLGA) NPs containing pDNA were formulated with and without CPP using a double-emulsion technique. NPs were characterized in regards of size, surface charge, release profile, pDNA encapsulation efficiency and pDNA integrity.
View Article and Find Full Text PDFThe use of cell-penetrating peptides (CPPs) in combination with nanoparticles (NPs) shows great potential for intracellular delivery of DNA. Currently, its application is limited due to the potential toxicity and unknown long-term side effects. In this study NPs prepared using a biodegradable polymer, poly(lactic⁻⁻glycolic acid (PLGA) in association with a CPP, was assessed on two lung epithelial cell lines (adenocarcinomic human alveolar basal epithelial cells (A549) and normal bronchial epithelial cells (Beas-2B cells)).
View Article and Find Full Text PDFPurpose: In this study, a cell penetrating peptide was used as an uptake enhancer for pDNA delivery to the lungs.
Methods: Polyplexes were prepared between pDNA and CPP. Intracellular delivery of pDNA was assessed in both alveolar (A549) and bronchial (Calu-3) epithelial cells.
The clinical and commercial development of polymeric sub-micron size formulations based on poly(lactic-co-glycolic acid) (PLGA) particles is hampered by the challenges related to their good manufacturing practice (GMP)-compliant, scale-up production without affecting the formulation specifications. Continuous process technologies enable large-scale production without changing the process or formulation parameters by increasing the operation time. Here, we explore three well-established process technologies regarding continuity for the large-scale production of sub-micron size PLGA particles developed at the lab scale using a batch method.
View Article and Find Full Text PDF