The gas-phase reaction chemistry when using dimethylsilane (DMS) as a source gas in a hot-wire chemical vapor deposition (CVD) process has been studied in this work. The complex chemistry is unraveled by using a soft 10.5 eV single photon ionization technique coupled with time-of-flight mass spectrometry in combination with the isotope labelling and chemical trapping methods.
View Article and Find Full Text PDFTo study the effect of an Si-Si bond on gas-phase reaction chemistry in the hot-wire chemical vapor deposition (HWCVD) process with a single source alkylsilane molecule, soft ionization with a vacuum ultraviolet wavelength of 118 nm was used with time-of-flight mass spectrometry to examine the products from the primary decomposition of hexamethyldisilane (HMDS) on a heated tungsten (W) filament and from secondary gas-phase reactions in a HWCVD reactor. It is found that both Si-Si and Si-C bonds break when HMDS decomposes on the W filament. The dominance of the breakage of Si-Si over Si-C bond has been demonstrated.
View Article and Find Full Text PDF