Defects in motile cilia, termed motile ciliopathies, result in clinical manifestations affecting the respiratory and reproductive system, as well as laterality defects and hydrocephalus. We previously defined biallelic variants causing and male infertility, mirroring the findings in mice. Here, we present clinical and genomic findings in five newly identified individuals from four unrelated families affected by -related disorder.
View Article and Find Full Text PDFBronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia, and primary immunodeficiency disorders), but most cases remain idiopathic.
View Article and Find Full Text PDFPurpose: Primary ciliary dyskinesia (PCD) is a heterogeneous disorder that includes respiratory symptoms, laterality defects, and infertility caused by dysfunction of motile cilia. Most PCD-causing variants result in abnormal outer dynein arms (ODAs), which provide the generative force for respiratory ciliary beating and proper mucociliary clearance.
Methods: In addition to studies in mouse and planaria, clinical exome sequencing and functional analyses in human were performed.
Purpose: The clinical spectrum of motile ciliopathies includes laterality defects, hydrocephalus, and infertility as well as primary ciliary dyskinesia when impaired mucociliary clearance results in otosinopulmonary disease. Importantly, approximately 30% of patients with primary ciliary dyskinesia lack a genetic diagnosis.
Methods: Clinical, genomic, biochemical, and functional studies were performed alongside in vivo modeling of DAW1 variants.
Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia.
View Article and Find Full Text PDF- Nearly one in 100 live births presents with congenital heart defects (CHD). CHD are frequently associated with laterality defects, such as (SIT), a mirrored positioning of internal organs. Body laterality is established by a complex process: monocilia at the embryonic left-right organizer (LRO) facilitate both the generation and sensing of a leftward fluid flow.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is a genetically heterogeneous chronic destructive airway disease. PCD is traditionally diagnosed by nasal nitric oxide measurement, analysis of ciliary beating, transmission electron microscopy (TEM), and/or genetic testing. In most genetic PCD variants, laterality defects can occur.
View Article and Find Full Text PDFDysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located β-HC DNAH11 (defining ODA type 1), and the distally localized β-HC DNAH9 (defining ODA type 2).
View Article and Find Full Text PDFThe clinical spectrum of ciliopathies affecting motile cilia spans impaired mucociliary clearance in the respiratory system, laterality defects including heart malformations, infertility and hydrocephalus. Using linkage analysis and whole exome sequencing, we identified two recessive loss-of-function MNS1 mutations in five individuals from four consanguineous families: 1) a homozygous nonsense mutation p.Arg242* in four males with laterality defects and infertility and 2) a homozygous nonsense mutation p.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility, and randomization of the left/right body axis as a result of defects of motile cilia and sperm flagella. We identified loss-of-function mutations in the open-reading frame C11orf70 in PCD individuals from five distinct families. Transmission electron microscopy analyses and high-resolution immunofluorescence microscopy demonstrate that loss-of-function mutations in C11orf70 cause immotility of respiratory cilia and sperm flagella, respectively, as a result of the loss of axonemal outer (ODAs) and inner dynein arms (IDAs), indicating that C11orf70 is involved in cytoplasmic assembly of dynein arms.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
October 2015
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder caused by several distinct defects in genes responsible for ciliary beating, leading to defective mucociliary clearance often associated with randomization of left/right body asymmetry. Individuals with PCD caused by defective radial spoke (RS) heads are difficult to diagnose owing to lack of gross ultrastructural defects and absence of situs inversus. Thus far, most mutations identified in human radial spoke genes (RSPH) are loss-of-function mutations, and missense variants have been rarely described.
View Article and Find Full Text PDFIn vertebrates, establishment of left-right (LR) asymmetry is dependent on cilia-driven fluid flow within the LR organizer. Mutations in CCDC11 disrupt LR asymmetry in humans, but how the gene functions in LR patterning is presently unknown. We describe a patient with situs inversus totalis carrying homozygous loss-of-function mutations in CCDC11.
View Article and Find Full Text PDFA diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, produced and preassembled in the cytosol, are transported to the ciliary or flagellar compartment and anchored into the axonemal microtubular scaffold via the ODA docking complex (ODA-DC) system. In humans, defects in ODA assembly are the major cause of primary ciliary dyskinesia (PCD), an inherited disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is a rare genetic disorder leading to recurrent respiratory tract infections. High-speed video-microscopy analysis (HVMA) of ciliary beating, currently the first-line diagnostic tool for PCD in most centres, is challenging because recent studies have expanded the spectrum of HVMA findings in PCD from grossly abnormal to very subtle. The objective of this study was to describe the diversity of HVMA findings in genetically confirmed PCD individuals.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects.
View Article and Find Full Text PDFDefects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain.
View Article and Find Full Text PDFDYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2-4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.
View Article and Find Full Text PDFThe motive forces for ciliary movement are generated by large multiprotein complexes referred to as outer dynein arms (ODAs), which are preassembled in the cytoplasm prior to transport to the ciliary axonemal compartment. In humans, defects in structural components, docking complexes, or cytoplasmic assembly factors can cause primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease and defects in laterality. By using combined high resolution copy-number variant and mutation analysis, we identified ARMC4 mutations in twelve PCD individuals whose cells showed reduced numbers of ODAs and severely impaired ciliary beating.
View Article and Find Full Text PDF