Rationale: Disruption of intracellular calcium (Ca2+) homeostasis is implicated in inflammatory responses. Here we investigated endoplasmic reticulum (ER) Ca2+ efflux through the Inositol 1,4,5-trisphosphate receptor (IP3R) as a potential mechanism of inflammatory pathophysiology in a ventilator-induced lung injury (VILI) mouse model.
Methods: C57BL/6 mice were exposed to mechanical ventilation using high tidal volume (HTV).
In ventilation-induced lung injury (VILI), prolonged nonpathogen-mediated inflammation is triggered as a result of alveolar hyperinflation. In our previous study, we suggested that endoplasmic reticulum (ER) stress-mediated inflammation was involved in VILI, but how ER stress is triggered remains unknown. Toll-like receptor 4 (TLR4) activation plays an important role in mechanical ventilation (MV)-induced lung inflammation, however, it is unknown whether ER stress is activated by TLR4 to participate in VILI.
View Article and Find Full Text PDFInflammation plays a criticalrole in the development of ventilator-induced lung injury (VILI). Endoplasmic reticulum (ER) stress is associated with a variety of diseases through the modulation of inflammatory responses. However, little is known about how ER stress is implicated in VILI.
View Article and Find Full Text PDFBACKGROUND Celecoxib has shown anti-tumor activities against several types of cancer. Although the majority of research focuses on its mechanism via cyclooxygenase-2 (COX-2) enzyme inhibition, we identified a distinct mechanism behind celecoxib anti-cancer abilities. MATERIAL AND METHODS We treated hepatocellular carcinoma (HCC) Huh-7 cells and tumor xenograft mice models with celecoxib to test its effects on the tumor.
View Article and Find Full Text PDF