D2 dopamine receptors (DRD2s) belong to a family of G protein-coupled receptors that modulate synaptic dopaminergic tone via regulation of dopamine synthesis, storage, and synaptic release. DRD2s are the primary target for traditional antipsychotic medications; dysfunctional DRD2 signaling has been linked to major depressive disorder, attention-deficit hyperactivity disorder, addiction, Parkinson's, and schizophrenia. DRD2 lateral diffusion appears to be an important post-translational regulatory mechanism; however, the dynamic response of DRD2s to ligand-induced activation is poorly understood.
View Article and Find Full Text PDFThe presynaptic dopamine transporter mediates rapid reuptake of synaptic dopamine. Although cell surface DAT trafficking recently emerged as an important component of DAT regulation, it has not been systematically investigated. Here, we apply our single quantum dot (Qdot) tracking approach to monitor DAT plasma membrane dynamics in several heterologous expression cell hosts with nanometer localization accuracy.
View Article and Find Full Text PDFThe use of nanometer-sized semiconductor crystals, known as quantum dots, allows us to directly observe individual biomolecular transactions through a fluorescence microscope. Here, we review the evolution of single quantum dot tracking over the past two decades, highlight key biophysical discoveries facilitated by quantum dots, briefly discuss biochemical and optical implementation strategies for a single quantum dot tracking experiment, and report recent accomplishments of our group at the interface of molecular neuroscience and nanoscience.
View Article and Find Full Text PDF