Tumor necrosis factor alpha (TNF-α) plays a vital role in Alzheimer's disease (AD) pathology, and TNF-α inhibitors (TNFIs) modulate AD pathology. We fused the TNF-α receptor (TNFR), a biologic TNFI that sequesters TNF-α, to a transferrin receptor antibody (TfRMAb) to deliver the TNFI into the brain across the blood-brain barrier (BBB). TfRMAb-TNFR was protective in 6-month-old transgenic APP/PS1 mice in our previous work.
View Article and Find Full Text PDFExtracellular accumulation of amyloid-beta (Aβ) plaques is one of the major pathological hallmarks of Alzheimer's disease (AD), and is the target of the only FDA-approved disease-modifying treatment for AD. Accordingly, the use of transgenic mouse models that overexpress the amyloid precursor protein and thereby accumulate cerebral Aβ plaques are widely used to model human AD in mice. Therefore, immunoassays, including enzyme-linked immunosorbent assay (ELISA) and immunostaining, commonly measure the Aβ load in brain tissues derived from AD transgenic mice.
View Article and Find Full Text PDFis a genus of soil bacteria, some isolates of which form an endosymbiotic relationship with diverse legumes of the Loteae tribe. The symbiotic genes of these mesorhizobia are generally carried on integrative and conjugative elements termed symbiosis islands (ICESyms). strains that nodulate spp.
View Article and Find Full Text PDFStaphylococcus aureus is a serious human and animal pathogen. Multilocus sequence type 612 (ST612) is the dominant methicillin-resistant S. aureus (MRSA) clone in certain South African hospitals and is sporadically isolated from horses and horse-associated veterinarians in Australia.
View Article and Find Full Text PDFStaphylococcus aureus is a serious pathogen of humans and animals. Multilocus sequence type 612 is dominant and highly virulent in South African hospitals but relatively uncommon elsewhere. We present the complete genome sequence of methicillin-resistant Staphylococcus aureus strain SVH7513, isolated from a horse at a veterinary clinic in New South Wales, Australia.
View Article and Find Full Text PDFUrban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations.
View Article and Find Full Text PDFCrim Behav Ment Health
April 2018
Background: Many prisoners rationalise criminal behaviour, and this type of thinking has been linked to recidivism. Correctional programmes for modifying criminal thinking can reshape how offenders view themselves and their circumstances.
Aim: Our aim was to test whether participation in a cognitive-based curriculum called Steps to Economic and Personal Success (STEPS) was associated with changes in criminal thinking.
The use of halotolerant acidophiles for bioleaching provides a biotechnical approach for the extraction of metals from regions where high salinity exists in the ores and source water. Here, we describe the first draft genome of a new species of a halotolerant and iron- and sulfur-oxidizing acidophile, DSM 14175 (strain V8).
View Article and Find Full Text PDFThe principal genomic features of Acidihalobacter prosperus DSM 14174 (strain V6) are presented here. This is a mesophilic, halotolerant, and iron/sulfur-oxidizing acidophile that was isolated from seawater at Vulcano, Italy. It has potential for use in biomining applications in regions where high salinity exists in the source water and ores.
View Article and Find Full Text PDFMob Genet Elements
September 2016
The horizontal gene transfer facilitated by mobile genetic elements impacts almost all areas of bacterial evolution, including the accretion and dissemination of antimicrobial-resistance genes in the human and animal pathogen Staphylococcus aureus. Genome surveys of staphylococcal plasmids have revealed an unexpected paucity of conjugation and mobilization loci, perhaps suggesting that conjugation plays only a minor role in the evolution of this genus. In this letter we present the DNA sequences of historically documented staphylococcal conjugative plasmids and highlight that at least 3 distinct and widely distributed families of conjugative plasmids currently contribute to the dissemination of antimicrobial resistance in Staphylococcus.
View Article and Find Full Text PDFStaphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation.
View Article and Find Full Text PDFEnviron Sci Technol
December 2011
Carbon dioxide sequestration via the use of sulfide reductants and mineral carbonation of the iron oxyhydroxide polymorphs lepidocrocite, goethite, and akaganeite with supercritical CO(2) (scCO(2)) was investigated using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The exposure of the different iron oxyhydroxides to aqueous sulfide in contact with scCO(2) at ∼70-100 °C resulted in the partial transformation of the minerals to siderite (FeCO(3)) and sulfide phases such as pyrite (FeS(2)). The relative yield of siderite to iron sulfide bearing mineral product was a strong function of the initial sulfide concentration.
View Article and Find Full Text PDF