Publications by authors named "Riley K Arbuckle"

This study introduces an innovative optical coherence tomography (OCT) imaging system dedicated to high-throughput screening applications using ex vivo tissue culture. Leveraging OCT's non-invasive, high-resolution capabilities, the system is equipped with a custom-designed motorized platform and tissue detection ability for automated, successive imaging across samples. Transformer-based deep-learning segmentation algorithms further ensure robust, consistent, and efficient readouts meeting the standards for screening assays.

View Article and Find Full Text PDF

This study introduces a groundbreaking optical coherence tomography (OCT) imaging system dedicated for high-throughput screening applications using ex vivo tissue culture. Leveraging OCT's non-invasive, high-resolution capabilities, the system is equipped with a custom-designed motorized platform and tissue detection ability for automated, successive imaging across samples. Transformer-based deep learning segmentation algorithms further ensure robust, consistent, and efficient readouts meeting the standards for screening assays.

View Article and Find Full Text PDF

Current treatments targeting individual protein quality control have limited efficacy in alleviating proteinopathies, highlighting the prerequisite for a common upstream druggable target capable of global proteostasis modulation. Building on our prior research establishing nuclear speckles as a pivotal membrane-less organelle responsible for global proteostasis transcriptional control, we aim to alleviate proteinopathies through nuclear speckle rejuvenation. We identified pyrvinium pamoate as a small-molecule nuclear speckle rejuvenator that enhances protein quality control while suppressing YAP1 signaling via decreasing the surface/interfacial tension of nuclear speckle condensates through interaction with the intrinsically disordered region of nuclear speckle scaffold protein SON.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is an inherited retinal disorder characterized by the degeneration of photoreceptors. Rho mice, which carry a Pro23His mutation in the RHODOPSIN (Rho) gene, are one of the most studied animal models for RP. However, except for the photoreceptors, other retinal neural cells have not been fully investigated in this model.

View Article and Find Full Text PDF