Publications by authors named "Rilee Zeinert"

Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated.

View Article and Find Full Text PDF

Magnesium (Mg) uptake systems are present in all domains of life given the vital role of this ion. Bacteria acquire Mg via conserved Mg channels and transporters. The transporters are required for growth when Mg is limiting or during bacterial pathogenesis, but, despite their significance, there are no known structures for these transporters.

View Article and Find Full Text PDF

The bacterial DNA damage response is a critical, coordinated response to endogenous and exogenous sources of DNA damage. Response dynamics are dependent on coordinated synthesis and loss of relevant proteins. While much is known about its global transcriptional control, changes in protein abundance that occur upon DNA damage are less well characterized at the system level.

View Article and Find Full Text PDF

Unlabelled: The bacterial DNA damage response is a critical, coordinated response to endogenous and exogenous sources of DNA damage. Response dynamics are dependent on coordinated synthesis and loss of relevant proteins. While much is known about its global transcriptional control, changes in protein abundance that occur upon DNA damage are less well characterized at the system level.

View Article and Find Full Text PDF

Proper regulation of the bacterial cell envelope is critical for cell survival. Identification and characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG, whose activity protects cells from a variety of lethal assaults in the ⍺-proteobacterium Caulobacter crescentus.

View Article and Find Full Text PDF

The understanding of bacterial gene function has been greatly enhanced by recent advancements in the deep sequencing of microbial genomes. Transposon insertion sequencing methods combines next-generation sequencing techniques with transposon mutagenesis for the exploration of the essentiality of genes under different environmental conditions. We propose a model-based method that uses regularized negative binomial regression to estimate the change in transposon insertions attributable to gene-environment changes in this genetic interaction study without transformations or uniform normalization.

View Article and Find Full Text PDF

The accumulation of deleterious mitochondrial DNA (∆mtDNA) causes inherited mitochondrial diseases and ageing-associated decline in mitochondrial functions such as oxidative phosphorylation. Following mitochondrial perturbations, the bZIP protein ATFS-1 induces a transcriptional programme to restore mitochondrial function. Paradoxically, ATFS-1 is also required to maintain ∆mtDNAs in heteroplasmic worms.

View Article and Find Full Text PDF

Guanosine tetra- and pentaphosphate, (p)ppGpp, are important alarmone nucleotides that regulate bacterial survival in stressful environment. A direct detection of (p)ppGpp in living cells is critical for our understanding of the mechanism of bacterial stringent response. However, it is still challenging to image cellular (p)ppGpp.

View Article and Find Full Text PDF

Protein degradation is an essential process in all organisms. This process is irreversible and energetically costly; therefore, protein destruction must be tightly controlled. While environmental stresses often lead to upregulation of proteases at the transcriptional level, little is known about posttranslational control of these critical machines.

View Article and Find Full Text PDF

During proteotoxic stress, bacteria maintain critical processes like DNA replication while removing misfolded proteins, which are degraded by the Lon protease. Here, we show that in Caulobacter crescentus Lon controls deoxyribonucleoside triphosphate (dNTP) pools during stress through degradation of the transcription factor CcrM. Elevated dNTP/nucleotide triphosphate (NTP) ratios in Δlon cells protects them from deletion of otherwise essential deoxythymidine triphosphate (dTTP)-producing pathways and shields them from hydroxyurea-induced loss of dNTPs.

View Article and Find Full Text PDF

Bacterial growth and division require regulated synthesis of the macromolecules used to expand and replicate components of the cell. Transcription of housekeeping genes required for metabolic homeostasis and cell proliferation is guided by the sigma factor σ70. The conserved CarD-like transcriptional regulator, CdnL, associates with promoter regions where σ70 localizes and stabilizes the open promoter complex.

View Article and Find Full Text PDF

Bacterial growth and division require insertion of new peptidoglycan (PG) into the existing cell wall by PG synthase enzymes. Emerging evidence suggests that many PG synthases require activation to function; however, it is unclear how activation of division-specific PG synthases occurs. The FtsZ cytoskeleton has been implicated as a regulator of PG synthesis during division, but the mechanisms through which it acts are unknown.

View Article and Find Full Text PDF

DnaA initiates chromosome replication in bacteria. In Caulobacter crescentus, the Lon protease degrades DnaA to coordinate replication with nutrient availability and to halt the cell cycle during acute stress. Here, we characterize the mechanism of DnaA recognition by Lon.

View Article and Find Full Text PDF

Manganese (Mn) is an essential trace nutrient for organisms because of its role in cofactoring enzymes and providing protection against reactive oxygen species (ROS). Many bacteria require manganese to form pathogenic or symbiotic interactions with eukaryotic host cells. However, excess manganese is toxic, requiring cells to have manganese export mechanisms.

View Article and Find Full Text PDF

Cell growth requires the removal of proteins that are unwanted or toxic. In bacteria, AAA+ proteases like the Clp family and Lon selectively destroy proteins defined by intrinsic specificity or adaptors. Caulobacter crescentus is a gram-negative bacterium that undergoes an obligate developmental transition every cell division cycle.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8viso32usic524bgo6udqhhugs6cptqc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once