Publications by authors named "Riku Walve"

Background: De novo genome assembly typically produces a set of contigs instead of the complete genome. Thus additional data such as genetic linkage maps, optical maps, or Hi-C data is needed to resolve the complete structure of the genome. Most of the previous work uses the additional data to order and orient contigs.

View Article and Find Full Text PDF

A key problem in processing raw optical mapping data (Rmaps) is finding Rmaps originating from the same genomic region. These sets of related Rmaps can be used to correct errors in Rmap data, and to find overlaps between Rmaps to assemble consensus optical maps. Previous Rmap overlap aligners are computationally very expensive and do not scale to large eukaryotic data sets.

View Article and Find Full Text PDF

Background: With long reads getting even longer and cheaper, large scale sequencing projects can be accomplished without short reads at an affordable cost. Due to the high error rates and less mature tools, de novo assembly of long reads is still challenging and often results in a large collection of contigs. Dense linkage maps are collections of markers whose location on the genome is approximately known.

View Article and Find Full Text PDF

Although recent developments in DNA sequencing have allowed for great leaps in both the quality and quantity of genome assembly projects, de novo assemblies still lack the efficiency and accuracy required for studying genetic variation of individuals. Thus, efficient and accurate methods for calling and genotyping genetic variants are fundamental to studying the genomes of individuals. We study the problem of genotyping insertion variants.

View Article and Find Full Text PDF

Motivation: New long read sequencing technologies, like PacBio SMRT and Oxford NanoPore, can produce sequencing reads up to 50 000 bp long but with an error rate of at least 15%. Reducing the error rate is necessary for subsequent utilization of the reads in, e.g.

View Article and Find Full Text PDF