Publications by authors named "Riku Turkki"

Identifying active compounds for a target is a time- and resource-intensive task in early drug discovery. Accurate bioactivity prediction using morphological profiles could streamline the process, enabling smaller, more focused compound screens. We investigate the potential of deep learning on unrefined single-concentration activity readouts and Cell Painting data, to predict compound activity across 140 diverse assays.

View Article and Find Full Text PDF

Unlabelled: Some clinically significant prostate cancers are missed by MRI. We asked whether the tumor stroma in surgically treated localized prostate cancer lesions positive or negative with MRI are different in their cellular and molecular properties, and whether the differences are reflected to the clinical course of the disease. We profiled the stromal and immune cell composition of MRI-classified tumor lesions by applying multiplexed fluorescence IHC (mfIHC) and automated image analysis in a clinical cohort of 343 patients (cohort I).

View Article and Find Full Text PDF

PROteolysis TArgeting Chimeras (PROTACs) use the ubiquitin-proteasome system to degrade a protein of interest for therapeutic benefit. Advances made in targeted protein degradation technology have been remarkable, with several molecules having moved into clinical studies. However, robust routes to assess and better understand the safety risks of PROTACs need to be identified, which is an essential step toward delivering efficacious and safe compounds to patients.

View Article and Find Full Text PDF

Cell Painting is a high-content image-based assay applied in drug discovery to predict bioactivity, assess toxicity and understand mechanisms of action of chemical and genetic perturbations. We investigate label-free Cell Painting by predicting the five fluorescent Cell Painting channels from brightfield input. We train and validate two deep learning models with a dataset representing 17 batches, and we evaluate on batches treated with compounds from a phenotypic set.

View Article and Find Full Text PDF

Patients with endometrial cancer differ in terms of the extent of T-cell infiltration; however, the association between T-cell subpopulations and patient outcomes remains unexplored. We characterized 285 early-stage endometrial carcinoma samples for T-cell infiltrates in a tissue microarray format using multiplex fluorescent immunohistochemistry. The proportion of T cells and their subpopulations were associated with clinicopathological features and relapse-free survival outcomes.

View Article and Find Full Text PDF

While the abundance and phenotype of tumor-infiltrating lymphocytes are linked with clinical survival, their spatial coordination and its clinical significance remain unclear. Here, we investigated the immune profile of intratumoral and peritumoral tissue of clear cell renal cell carcinoma patients (n = 64). We trained a cell classifier to detect lymphocytes from hematoxylin and eosin stained tissue slides.

View Article and Find Full Text PDF

The immunologic microenvironment in various solid tumors is aberrant and correlates with clinical survival. Here, we present a comprehensive analysis of the immune environment of acute myeloid leukemia (AML) bone marrow (BM) at diagnosis. We compared the immunologic landscape of formalin-fixed paraffin-embedded BM trephine samples from AML (n = 69), chronic myeloid leukemia (CML; n = 56), and B-cell acute lymphoblastic leukemia (B-ALL) patients (n = 52) at diagnosis to controls (n = 12) with 30 immunophenotype markers using multiplex immunohistochemistry and computerized image analysis.

View Article and Find Full Text PDF

Current risk factors in stage II colorectal carcinoma are insufficient to guide treatment decisions. Loss of CDX2 has been shown to associate with poor clinical outcome and predict benefit for adjuvant chemotherapy in stage II and III colorectal carcinoma. The prognostic relevance of CDX2 in stage II disease has not been sufficiently validated, especially in relation to clinical risk factors, such as microsatellite instability (MSI) status, BRAF mutation status, and tumor budding.

View Article and Find Full Text PDF

Purpose: Recent advances in machine learning have enabled better understanding of large and complex visual data. Here, we aim to investigate patient outcome prediction with a machine learning method using only an image of tumour sample as an input.

Methods: Utilising tissue microarray (TMA) samples obtained from the primary tumour of patients (N = 1299) within a nationwide breast cancer series with long-term-follow-up, we train and validate a machine learning method for patient outcome prediction.

View Article and Find Full Text PDF

As novel immunological treatments are gaining a foothold in the treatment of acute lymphoblastic leukemia (ALL), it is elemental to examine ALL immunobiology in more detail. We used multiplexed immunohistochemistry (mIHC) to study the immune contexture in adult precursor B cell ALL bone marrow (BM). In addition, we developed a multivariate risk prediction model that stratified a poor survival group based on clinical parameters and mIHC data.

View Article and Find Full Text PDF

Tumour budding predicts survival of stage II colorectal cancer (CRC) and has been suggested to be associated with epithelial-to-mesenchymal transition (EMT). However, the underlying molecular changes of tumour budding remain poorly understood. Here, we performed multiplex immunohistochemistry (mIHC) to phenotypically profile tumours using known EMT-associated markers: E-cadherin (adherence junctions), integrin β4 (ITGB4; basement membrane), ZO-1 (tight junctions), and pan-cytokeratin.

View Article and Find Full Text PDF

Renal cell cancer (RCC) has become a prototype example of the extensive intratumor heterogeneity and clonal evolution of human cancers. However, there is little direct evidence on how the genetic heterogeneity impacts on drug response profiles of the cancer cells. Our goal was to determine how genomic clonal evolution impacts drug responses.

View Article and Find Full Text PDF

Increasing evidence suggests that the immune system affects prognosis of chronic myeloid leukemia (CML), but the detailed immunological composition of the leukemia bone marrow (BM) microenvironment is unknown. We aimed to characterize the immune landscape of the CML BM and predict the current treatment goal of tyrosine kinase inhibitor (TKI) therapy, molecular remission 4.0 (MR4.

View Article and Find Full Text PDF

Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification.

View Article and Find Full Text PDF

A key question in precision medicine is how functional heterogeneity in solid tumours informs therapeutic sensitivity. We demonstrate that spatial characteristics of oncogenic signalling and therapy response can be modelled in precision-cut slices from Kras-driven non-small-cell lung cancer with varying histopathologies. Unexpectedly, profiling of in situ tumours demonstrated that signalling stratifies mostly according to histopathology, showing enhanced AKT and SRC activity in adenosquamous carcinoma, and mitogen-activated protein kinase (MAPK) activity in adenocarcinoma.

View Article and Find Full Text PDF

Caveolin-1 (CAV1) is over-expressed in prostate cancer (PCa) and is associated with adverse prognosis, but the molecular mechanisms linking CAV1 expression to disease progression are poorly understood. Extensive gene expression correlation analysis, quantitative multiplex imaging of clinical samples, and analysis of the CAV1-dependent transcriptome, supported that CAV1 re-programmes TGFβ signalling from tumour suppressive to oncogenic (i.e.

View Article and Find Full Text PDF

The paradigm of molecular histopathology is shifting from a single-marker immunohistochemistry towards multiplexed detection of markers to better understand the complex pathological processes. However, there are no systems allowing multiplexed IHC (mIHC) with high-resolution whole-slide tissue imaging and analysis, yet providing feasible throughput for routine use. We present an mIHC platform combining fluorescent and chromogenic staining with automated whole-slide imaging and integrated whole-slide image analysis, enabling simultaneous detection of six protein markers and nuclei, and automatic quantification and classification of hundreds of thousands of cells in situ in formalin-fixed paraffin-embedded tissues.

View Article and Find Full Text PDF

Background: Immune cell infiltration in tumor is an emerging prognostic biomarker in breast cancer. The gold standard for quantification of immune cells in tissue sections is visual assessment through a microscope, which is subjective and semi-quantitative. In this study, we propose and evaluate an approach based on antibody-guided annotation and deep learning to quantify immune cell-rich areas in hematoxylin and eosin (H&E) stained samples.

View Article and Find Full Text PDF

Background: We conducted a phase I study with a granulocyte macrophage colony stimulating factor (GMCSF)-expressing oncolytic adenovirus, ONCOS-102, in patients with solid tumors refractory to available treatments. The objectives of the study were to determine the optimal dose for further use and to assess the safety, tolerability and adverse event (AE) profile of ONCOS-102. Further, the response rate and overall survival were evaluated as well as preliminary evidence of disease control.

View Article and Find Full Text PDF

Introduction: A significant barrier to medical diagnostics in low-resource environments is the lack of medical care and equipment. Here we present a low-cost, cloud-connected digital microscope for applications at the point-of-care. We evaluate the performance of the device in the digital assessment of estrogen receptor-alpha (ER) expression in breast cancer samples.

View Article and Find Full Text PDF

Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them.

View Article and Find Full Text PDF

Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus.

View Article and Find Full Text PDF

Aims: To build and evaluate an automated method for assessing tumour viability in histological tissue samples using texture features and supervised learning.

Methods: H&E-stained sections (n=56) of human non-small cell lung adenocarcinoma xenografts were digitised with a whole-slide scanner. A novel image analysis method based on local binary patterns and a support vector machine classifier was trained with a set of sample regions (n=177) extracted from the whole-slide images and tested with another set of images (n=494).

View Article and Find Full Text PDF

Late stage cancer is often associated with reduced immune recognition and a highly immunosuppressive tumor microenvironment. The presence of tumor infiltrating lymphocytes (TILs) and specific gene-signatures prior to treatment are linked to good prognosis, while the opposite is true for extensive immunosuppression. The use of adenoviruses as cancer vaccines is a form of active immunotherapy to initialise a tumor-specific immune response that targets the patient's unique tumor antigen repertoire.

View Article and Find Full Text PDF

Oncolytic viruses that selectively replicate in tumor cells can be used for treatment of cancer. Accumulating data suggests that virus induced oncolysis can enhance anti-tumor immunity and break immune tolerance. To capitalize on the immunogenic nature of oncolysis, we generated a quadruple modified oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (GMCSF).

View Article and Find Full Text PDF