Publications by authors named "Riku Takahashi"

Background: Strabismus surgery, which is commonly performed in children, poses a high risk of postoperative vomiting. The current anesthesia guidelines for the prevention of postoperative vomiting in children are based on heterogeneous populations involving different types of surgery, and risk factors for postoperative vomiting in, specifically, the pediatric strabismus surgery population are unclear. Moreover, the effects of manipulating the deeply attached extraocular muscles and the oculocardiac reflex on this risk remain inconclusive.

View Article and Find Full Text PDF

Composites of hydrogels and metals are gaining interest because of each material's unique properties. However, the stable adhesion of metals on hydrogels is challenging due to the mechanical mismatch at the soft-hard interface and the liquidity of the water components in hydrogels. We propose a facile physical-adhesion method that involves the dehydration process of hydrogels to transfer metals from a glass substrate.

View Article and Find Full Text PDF

Animal adaptation to environmental goals to pursue rewards is modulated by dopamine. However, the role of dopamine in the hippocampus, involved in spatial navigation, remains unclear. Here, we studied dopaminergic inputs from the ventral tegmental area (VTA) to the hippocampus, focusing on spatial goal persistence and adaptation.

View Article and Find Full Text PDF

Epithelial cells migrate autonomously by aligning and inducing a collective motion. Controlling the collective motion of epithelial cells in geometrically confined environments is important for understanding physiological processes such as wound healing and self-organized morphogenesis. However, collective migration under a three-dimensional (3D) curved surface resembling living epithelial tissue has not yet been explored.

View Article and Find Full Text PDF

BACKGROUND Considering the ongoing coronavirus disease 2019 (COVID-19) pandemic, sufficient information about common and serious adverse events is needed to rapidly distribute COVID-19 vaccines worldwide. We report a case of neuroleptic malignant syndrome (NMS) with adrenal insufficiency after initial vaccination with Pfizer/BioNTech BNT162b2. CASE REPORT A 48-year-old man presented to the Emergency Department with fever and an altered mental status 7 days after receiving the first dose of the BNT162b2 COVID-19 vaccine.

View Article and Find Full Text PDF

We propose a new concept that utilizes the difference in Poisson's ratio between component materials as a strengthening mechanism that increases the effectiveness of the sacrificial bond toughening mechanism in macroscale double-network (Macro-DN) materials. These Macro-DN composites consist of a macroscopic skeleton imbedded within a soft elastic matrix. We varied the Poisson's ratio of the reinforcing skeleton by introducing auxetic or honeycomb functional structures that results in Poisson's ratio mismatch between the skeleton and matrix.

View Article and Find Full Text PDF

Microchannels in soft materials play an important role in developing movable, deformable, and biocompatible fluidic systems for applications in various fields. Intensively investigated approaches to create microscale channel architectures use mechanical instability in soft materials, which can provide intricate yet ordered architectures with low cost and high throughput. Here, for microchannel fabrication, we demonstrate the use of swelling-driven buckle delamination of hydrogels, which is a mechanical instability pattern found in compressed film/substrate layer composites.

View Article and Find Full Text PDF

Multiple mazes are routinely used to test the performance of animals because each has disadvantages inherent to its shape. However, the maze shape cannot be flexibly and rapidly reproduced in a repeatable and scalable way in a single environment. Here, to overcome the lack of flexibility, scalability, reproducibility, and repeatability, we develop a reconfigurable maze system that consists of interlocking runways and an array of accompanying parts.

View Article and Find Full Text PDF

Applying the double network principle to develop tough hydrogels with different polymer chemistries is important for the potential application of hydrogel materials. Synthesis of the two interpenetrated networks with contrasting structure and properties required for double networks usually involves a two-step polymerization process. In this work, we present a new method to synthesize tough double network hydrogels by post-physical crosslinking of linear semi-rigid polyelectrolytes entrapped in a chemically crosslinked neutral network.

View Article and Find Full Text PDF

The double network concept, based on the fracture of sacrificial bonds, has been revolutionary toward the creation of robust soft materials. Based on the essence of double network hydrogels, macroscale, three-dimensional printed rigid sacrificial networks are embedded within silicone rubber stretchable matrices. Preferential fracture of the sacrificial network results in a ∼60 time increase in stiffness and a ∼50% increase in the work of extension compared with the neat matrix.

View Article and Find Full Text PDF

The topological features of material surfaces are crucial to the emergence of functions based on characteristic architectures. Among them, the combination of surface architectures and soft materials, which are highly deformable and flexible, has great potential as regards developing functional materials toward providing/enhancing advanced functions such as switchability and variability. Therefore, a simple yet versatile method for creating three-dimensional (3D) architectures based on soft materials is strongly required.

View Article and Find Full Text PDF

Tumor necrosis factor α (TNF-α), a pro-inflammatory cytokine, regulates inflammatory and immune responses by up-regulating gene expression in a manner that is dependent on the transcription factor nuclear factor κB (NF-κB). In the present study, we found that 4-hydroxypanduratin A and isopanduratin A, constituents of the rhizomes of Boesenbergia pandurata, inhibited the TNF-α-stimulated up-regulation of intercellular adhesion molecule-1 (ICAM-1) in human lung adenocarcinoma A549 cells. 4-Hydroxypanduratin A and isopanduratin A also reduced ICAM-1 mRNA expression and NF-κB-responsive luciferase activity in TNF-α-stimulated A549 cells.

View Article and Find Full Text PDF

Hydrogels have promising applications in diverse areas, especially wet environments including tissue engineering, wound dressing, biomedical devices, and underwater soft robotics. Despite strong demands in such applications and great progress in irreversible bonding of robust hydrogels to diverse synthetic and biological surfaces, tough hydrogels with fast, strong, and reversible underwater adhesion are still not available. Herein, a strategy to develop hydrogels demonstrating such characteristics by combining macroscale surface engineering and nanoscale dynamic bonds is proposed.

View Article and Find Full Text PDF

Reinforcing hydrogels with a rigid scaffold is a promising method to greatly expand the mechanical and physical properties of hydrogels. One of the challenges of creating hydrogel composites is the significant stress that occurs due to swelling mismatch between the water-swollen hydrogel matrix and the rigid skeleton in aqueous media. This stress can cause physical deformation (wrinkling, buckling, or fracture), preventing the fabrication of robust composites.

View Article and Find Full Text PDF

A simple device structure composed of an interfacial Eu complex on a mesoporous TiO film is developed by a solution process and acts as the high-performance photodetector with photomultiplication phenomena. The electron transfer from the photoexcited organic ligand, 2,2':6',2″-terpyridine (terpy), as a photosensitizer to TiO is accelerated by the reduction level of Eu ions chemically bonding among terpy and TiO, resulting in the generation of a large photocurrent. It is worth noting that its external quantum efficiency is in excess of 10% under applied reverse bias.

View Article and Find Full Text PDF

Most studies on hydrogel swelling instability have been focused on a constrained boundary condition. In this paper, we studied the mechanical instability of a piece of disc-shaped hydrogel during free swelling. The fast swelling of the gel induces two swelling mismatches; a surface-inner layer mismatch and an annulus-disc mismatch, which lead to the formation of a surface crease pattern and a saddle-like bulk bending, respectively.

View Article and Find Full Text PDF

Biomacromolecules usually form complex superstructures in natural biotissues, such as different alignments of collagen fibres in articular cartilages, for multifunctionalities. Inspired by nature, there are efforts towards developing multiscale ordered structures in hydrogels (recognized as one of the best candidates of soft biotissues). However, creating complex superstructures in gels are hardly realized because of the absence of effective approaches to control the localized molecular orientation.

View Article and Find Full Text PDF